深入解析基于OpenCV年龄与性别识别系统
在这篇博客中,我们将详细解析一个使用OpenCV进行年龄和性别识别的Python脚本。这个脚本展示了如何利用深度学习模型,从视频或图像中检测人脸并预测每个人脸的年龄和性别。
1. 导入必要的模块
import cv2 as cv import math import time import argparse
首先,脚本开始于导入必需的Python模块。这里cv2是OpenCV库的Python接口,主要用于图像处理和计算机视觉任务。argparse用于处理命令行参数,time用于测量执行时间。
2. 人脸检测功能
def getFaceBox(net, frame, conf_threshold=0.7): frameOpencvDnn = frame.copy() frameHeight = frameOpencvDnn.shape[0] frameWidth = frameOpencvDnn.shape[1] blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False) net.setInput(blob) detections = net.forward() bboxes = [] for i in range(detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > conf_threshold: x1 = int(detections[0, 0, i, 3] * frameWidth) y1 = int(detections[0, 0, i, 4] * frameHeight) x2 = int(detections[0, 0, i, 5] * frameWidth) y2 = int(detections[0, 0, i, 6] * frameHeight) bboxes.append([x1, y1, x2, y2]) cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8) return frameOpencvDnn, bboxes
getFaceBox`是脚本的核心,用于从给定的帧中检测人脸。它首先创建一个图像的blob(一个经过预处理的图像数组),然后通过预训练的神经网络进行前向传播,检测出图像中的人脸。对于每个检测到的人脸,如果其置信度高于阈值,它计算出人脸的边界框,并在图像上绘制矩形。
3. 解析命令行参数和模型加载
if __name__ == '__main__': parser = argparse.ArgumentParser(description='Use this script to run age and gender recognition using OpenCV.') parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.') parser.add_argument("--device", default="cpu", help="Device to inference on") args = parser.parse_args()
在脚本的主部分,它首先定义了命令行参数解析器,允许用户指定输入源(图像或视频文件,或者摄像头流)和推理设备(CPU或GPU)。
faceNet = cv.dnn.readNet(faceModel, faceProto) ageNet = cv.dnn.readNet(ageModel, ageProto) genderNet = cv.dnn.readNet(genderModel, genderProto)
这里,脚本加载了三个预训练模型:人脸检测、年龄预测和性别预测。每个模型都通过OpenCV的深度神经网络模块读取。
4. 主循环
while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if notFrame: cv.waitKey() break frameFace, bboxes = getFaceBox(faceNet, frame) if not bboxes: print("No face Detected, Checking next frame") continue
在主循环中,脚本从视频捕获设备或图像文件中读取帧。然后它调用getFaceBox函数来获取每帧中的人脸边界框。
5. 性别和年龄识别
for bbox in bboxes: face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)] blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False) genderNet.setInput(blob) genderPreds = genderNet.forward() gender = genderList[genderPreds[0].argmax()] ageNet.setInput(blob) agePreds = ageNet.forward() age = ageList[agePreds[0].argmax()] label = "{},{}".format(gender, age) cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA) cv.imshow("Age Gender Demo", frameFace)
对于每个检测到的人脸,脚本提取人脸图像并生成一个blob,然后将其输入到性别和年龄识别模型中。通过模型的输出,它确定每个人脸的性别和年龄,并在原始图像上标记出这些信息。
完整代码
# Import required modules import cv2 as cv import math import time import argparse def getFaceBox(net, frame, conf_threshold=0.7): frameOpencvDnn = frame.copy() frameHeight = frameOpencvDnn.shape[0] frameWidth = frameOpencvDnn.shape[1] blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False) net.setInput(blob) detections = net.forward() bboxes = [] for i in range(detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > conf_threshold: x1 = int(detections[0, 0, i, 3] * frameWidth) y1 = int(detections[0, 0, i, 4] * frameHeight) x2 = int(detections[0, 0, i, 5] * frameWidth) y2 = int(detections[0, 0, i, 6] * frameHeight) bboxes.append([x1, y1, x2, y2]) cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8) return frameOpencvDnn, bboxes if __name__ == '__main__': parser = argparse.ArgumentParser(description='Use this script to run age and gender recognition using OpenCV.') parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.') parser.add_argument("--device", default="cpu", help="Device to inference on") args = parser.parse_args() # args = parser.parse_args() faceProto = "opencv_face_detector.pbtxt" faceModel = "opencv_face_detector_uint8.pb" ageProto = "age_deploy.prototxt" ageModel = "age_net.caffemodel" genderProto = "gender_deploy.prototxt" genderModel = "gender_net.caffemodel" MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746) ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)'] genderList = ['Male', 'Female'] # Load network ageNet = cv.dnn.readNet(ageModel, ageProto) genderNet = cv.dnn.readNet(genderModel, genderProto) faceNet = cv.dnn.readNet(faceModel, faceProto) if args.device == "cpu": ageNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU) genderNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU) faceNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU) print("Using CPU device") elif args.device == "gpu": ageNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA) ageNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA) genderNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA) genderNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA) genderNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA) genderNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA) print("Using GPU device") # # Open a video file or an image file or a camera stream cap = cv.VideoCapture(args.input if args.input else 0) padding = 20 while cv.waitKey(1) < 0: # Read frame t = time.time() hasFrame, frame = cap.read() if not hasFrame: cv.waitKey() break frameFace, bboxes = getFaceBox(faceNet, frame) if not bboxes: print("No face Detected, Checking next frame") continue for bbox in bboxes: # print(bbox) face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)] blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False) genderNet.setInput(blob) genderPreds = genderNet.forward() gender = genderList[genderPreds[0].argmax()] # print("Gender Output : {}".format(genderPreds)) print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max())) ageNet.setInput(blob) agePreds = ageNet.forward() age = ageList[agePreds[0].argmax()] print("Age Output : {}".format(agePreds)) print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max())) label = "{},{}".format(gender, age) cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA) cv.imshow("Age Gender Demo", frameFace) # cv.imwrite("age-gender-out-{}".format(args.input),frameFace) print("time : {:.3f}".format(time.time() - t)) # cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=~/opencv_gpu -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DOPENCV_ENABLE_NONFREE=ON -DOPENCV_EXTRA_MODULES_PATH=~/cv2_gpu/opencv_contrib/modules -DPYTHON_EXECUTABLE=~/env/bin/python3 -DBUILD_EXAMPLES=ON -DWITH_CUDA=ON -DWITH_CUDNN=ON -DOPENCV_DNN_CUDA=ON -DENABLE_FAST_MATH=ON -DCUDA_FAST_MATH=ON -DWITH_CUBLAS=ON -DCUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-10.2 -DOpenCL_LIBRARY=/usr/local/cuda-10.2/lib64/libOpenCL.so -DOpenCL_INCLUDE_DIR=/usr/local/cuda-10.2/include/ ..
还没有评论,来说两句吧...