【Python实战】——Python+Opencv是实现车牌自动识别

【Python实战】——Python+Opencv是实现车牌自动识别

码农世界 2024-05-17 后端 73 次浏览 0个评论

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972


   个人介绍: 研一|统计学|干货分享

         擅长Python、Matlab、R等主流编程软件

         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

  • 1 导入相关模块
  • 2 相关功能函数定义
    • 2.1 彩色图片显示函数(plt_show0)
    • 2.2 灰度图片显示函数(plt_show)
    • 2.3 图像去噪函数(gray_guss)
    • 2 图像预处理
      • 2.1 图片读取
      • 2.2 高斯去噪
      • 2.3 边缘检测
      • 2.4 阈值化
      • 3 车牌定位
        • 3.1 区域选择
        • 3.2 形态学操作
        • 3.3 轮廓检测
        • 4 车牌字符分割
          • 4.1 高斯去噪
          • 4.2 阈值化
          • 4.3 膨胀操作
          • 4.4 车牌号排序
          • 4.5 分割效果
          • 5 模板匹配
            • 5.1 准备模板
            • 5.2 匹配结果
            • 5.3 匹配效果展示
            • 6完整代码

              该篇文章将以实战形式演示利用Python结合Opencv实现车牌识别,全程涉及图像预处理、车牌定位、车牌分割、通过模板匹配识别结果输出。该项目对于智能交通、车辆管理等领域具有实际应用价值。通过自动识别车牌号码,可以实现车辆追踪、违章查询、停车场管理等功能,提高交通管理的效率和准确性。可用于车牌识别技术学习。

              技术要点:

              • OpenCV:用于图像处理和计算机视觉任务。
              • Python:作为编程语言,具有简单易学、资源丰富等优点。
              • 图像处理技术:如灰度化、噪声去除、边缘检测、形态学操作、透视变换等。

                1 导入相关模块

                import cv2
                from matplotlib import pyplot as plt
                import os
                import numpy as np
                from PIL import ImageFont, ImageDraw, Image
                

                2 相关功能函数定义

                2.1 彩色图片显示函数(plt_show0)

                def plt_show0(img):
                    b,g,r = cv2.split(img)
                    img = cv2.merge([r, g, b])
                    plt.imshow(img)
                    plt.show()
                

                cv2与plt的图像通道不同:cv2为[b,g,r];plt为[r, g, b]

                2.2 灰度图片显示函数(plt_show)

                def plt_show(img):
                    plt.imshow(img,cmap='gray')
                    plt.show()
                

                2.3 图像去噪函数(gray_guss)

                def gray_guss(image):
                    image = cv2.GaussianBlur(image, (3, 3), 0)
                    gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
                    return gray_image
                

                此处演示使用高斯模糊去噪。

                cv2.GaussianBlur参数说明:

                • src:输入图像,可以是任意数量的通道,这些通道可以独立处理,但深度应为 CV_8U、CV_16U、CV_16S、CV_32F 或 CV_64F。
                • ksize:高斯核的大小,必须是正奇数,例如 (3, 3)、(5, 5) 等。如果 ksize 的值为零,那么它会根据 sigmaX 和 sigmaY 的值来计算。
                • sigmaX:X 方向上的高斯核标准偏差。
                • dst:输出图像,大小和类型与 src 相同。
                • sigmaY:Y 方向上的高斯核标准偏差,如果 sigmaY 是零,那么它会与 sigmaX 的值相同。如果 sigmaY 是负数,那么它会从 ksize.width 和 ksize.height 计算得出。
                • borderType:像素外插法,有默认值。

                  2 图像预处理

                  2.1 图片读取

                  origin_image = cv2.imread('D:/image/car3.jpg')
                  

                    此处演示识别车牌原图:

                  【Python实战】——Python+Opencv是实现车牌自动识别

                  2.2 高斯去噪

                  origin_image = cv2.imread('D:/image/car3.jpg')
                  # 复制一张图片,在复制图上进行图像操作,保留原图
                  image = origin_image.copy()
                  gray_image = gray_guss(image)
                  

                  2.3 边缘检测

                  Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
                  absX = cv2.convertScaleAbs(Sobel_x)
                  image = absX
                  

                  x方向上的边缘检测(增强边缘信息)。

                  2.4 阈值化

                  # 图像阈值化操作——获得二值化图
                  ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
                  # 显示灰度图像
                  plt_show(image)
                  

                    运行结果:

                  【Python实战】——Python+Opencv是实现车牌自动识别

                  3 车牌定位

                  3.1 区域选择

                  kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
                  image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
                  # 显示灰度图像
                  plt_show(image)
                  

                  从图像中提取对表达和描绘区域形状有意义的图像分量。

                    运行结果:

                  【Python实战】——Python+Opencv是实现车牌自动识别

                  3.2 形态学操作

                  # 腐蚀(erode)和膨胀(dilate)
                  kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
                  kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
                  #x方向进行闭操作(抑制暗细节)
                  image = cv2.dilate(image, kernelX)
                  image = cv2.erode(image, kernelX)
                  #y方向的开操作
                  image = cv2.erode(image, kernelY)
                  image = cv2.dilate(image, kernelY)
                  # 中值滤波(去噪)
                  image = cv2.medianBlur(image, 21)
                  # 显示灰度图像
                  plt_show(image)
                  

                  使用膨胀和腐蚀操作来突出车牌区域。

                     运行结果:

                  【Python实战】——Python+Opencv是实现车牌自动识别

                  3.3 轮廓检测

                  contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
                  for item in contours:
                      rect = cv2.boundingRect(item)
                      x = rect[0]
                      y = rect[1]
                      weight = rect[2]
                      height = rect[3]
                      # 根据轮廓的形状特点,确定车牌的轮廓位置并截取图像
                      if (weight > (height * 3)) and (weight < (height * 4.5)):
                          image = origin_image[y:y + height, x:x + weight]
                          plt_show(image)
                  

                  【Python实战】——Python+Opencv是实现车牌自动识别

                  4 车牌字符分割

                  4.1 高斯去噪

                  # 图像去噪灰度处理
                  gray_image = gray_guss(image)
                  

                  4.2 阈值化

                  ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
                  plt_show(image)
                  

                    运行结果:

                  【Python实战】——Python+Opencv是实现车牌自动识别

                  4.3 膨胀操作

                  #膨胀操作
                  kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 4))
                  image = cv2.dilate(image, kernel)
                  plt_show(image)
                  

                    运行结果:

                  【Python实战】——Python+Opencv是实现车牌自动识别

                  4.4 车牌号排序

                  words = sorted(words,key=lambda s:s[0],reverse=False)
                  i = 0
                  #word中存放轮廓的起始点和宽高
                  for word in words:
                      # 筛选字符的轮廓
                      if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 5.5)) and (word[2] > 10):
                          i = i+1
                          if word[2] < 15:
                              splite_image = image[word[1]:word[1] + word[3], word[0]-word[2]:word[0] + word[2]*2]
                          else:
                              splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
                          word_images.append(splite_image)
                          print(i)
                  print(words)
                  

                    运行结果:

                  1
                  2
                  3
                  4
                  5
                  6
                  7
                  [[2, 0, 7, 70], [12, 6, 30, 55], [15, 7, 7, 9], [46, 6, 32, 55], [83, 30, 9, 9], [96, 7, 32, 55], [132, 8, 32, 55], [167, 8, 30, 54], [202, 62, 7, 6], [203, 7, 30, 55], [245, 7, 12, 54], [266, 0, 12, 70]]
                  

                  4.5 分割效果

                  for i,j in enumerate(word_images):  
                      plt.subplot(1,7,i+1)
                      plt.imshow(word_images[i],cmap='gray')
                  plt.show()
                  

                    运行结果:

                  【Python实战】——Python+Opencv是实现车牌自动识别

                  5 模板匹配

                  5.1 准备模板

                  # 准备模板(template[0-9]为数字模板;)
                  template = ['0','1','2','3','4','5','6','7','8','9',
                              'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',
                              '藏','川','鄂','甘','赣','贵','桂','黑','沪','吉','冀','津','晋','京','辽','鲁','蒙','闽','宁',
                              '青','琼','陕','苏','皖','湘','新','渝','豫','粤','云','浙']
                  # 读取一个文件夹下的所有图片,输入参数是文件名,返回模板文件地址列表
                  def read_directory(directory_name):
                      referImg_list = []
                      for filename in os.listdir(directory_name):
                          referImg_list.append(directory_name + "/" + filename)
                      return referImg_list
                  # 获得中文模板列表(只匹配车牌的第一个字符)
                  def get_chinese_words_list():
                      chinese_words_list = []
                      for i in range(34,64):
                          #将模板存放在字典中
                          c_word = read_directory('D:/refer1/'+ template[i])
                          chinese_words_list.append(c_word)
                      return chinese_words_list
                  chinese_words_list = get_chinese_words_list()
                  # 获得英文模板列表(只匹配车牌的第二个字符)
                  def get_eng_words_list():
                      eng_words_list = []
                      for i in range(10,34):
                          e_word = read_directory('D:/refer1/'+ template[i])
                          eng_words_list.append(e_word)
                      return eng_words_list
                  eng_words_list = get_eng_words_list()
                  # 获得英文和数字模板列表(匹配车牌后面的字符)
                  def get_eng_num_words_list():
                      eng_num_words_list = []
                      for i in range(0,34):
                          word = read_directory('D:/refer1/'+ template[i])
                          eng_num_words_list.append(word)
                      return eng_num_words_list
                  eng_num_words_list = get_eng_num_words_list()
                  

                  此处需提前准备各类字符模板。

                  5.2 匹配结果

                  # 获得英文和数字模板列表(匹配车牌后面的字符)
                  def get_eng_num_words_list():
                      eng_num_words_list = []
                      for i in range(0,34):
                          word = read_directory('D:/refer1/'+ template[i])
                          eng_num_words_list.append(word)
                      return eng_num_words_list
                  eng_num_words_list = get_eng_num_words_list()
                  # 读取一个模板地址与图片进行匹配,返回得分
                  def template_score(template,image):
                      #将模板进行格式转换
                      template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)
                      template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
                      #模板图像阈值化处理——获得黑白图
                      ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
                  #     height, width = template_img.shape
                  #     image_ = image.copy()
                  #     image_ = cv2.resize(image_, (width, height))
                      image_ = image.copy()
                      #获得待检测图片的尺寸
                      height, width = image_.shape
                      # 将模板resize至与图像一样大小
                      template_img = cv2.resize(template_img, (width, height))
                      # 模板匹配,返回匹配得分
                      result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)
                      return result[0][0]
                  # 对分割得到的字符逐一匹配
                  def template_matching(word_images):
                      results = []
                      for index,word_image in enumerate(word_images):
                          if index==0:
                              best_score = []
                              for chinese_words in chinese_words_list:
                                  score = []
                                  for chinese_word in chinese_words:
                                      result = template_score(chinese_word,word_image)
                                      score.append(result)
                                  best_score.append(max(score))
                              i = best_score.index(max(best_score))
                              # print(template[34+i])
                              r = template[34+i]
                              results.append(r)
                              continue
                          if index==1:
                              best_score = []
                              for eng_word_list in eng_words_list:
                                  score = []
                                  for eng_word in eng_word_list:
                                      result = template_score(eng_word,word_image)
                                      score.append(result)
                                  best_score.append(max(score))
                              i = best_score.index(max(best_score))
                              # print(template[10+i])
                              r = template[10+i]
                              results.append(r)
                              continue
                          else:
                              best_score = []
                              for eng_num_word_list in eng_num_words_list:
                                  score = []
                                  for eng_num_word in eng_num_word_list:
                                      result = template_score(eng_num_word,word_image)
                                      score.append(result)
                                  best_score.append(max(score))
                              i = best_score.index(max(best_score))
                              # print(template[i])
                              r = template[i]
                              results.append(r)
                              continue
                      return results
                  word_images_ = word_images.copy()
                  # 调用函数获得结果
                  result = template_matching(word_images_)
                  print(result)
                  print( "".join(result))
                  

                    运行结果:

                  ['渝', 'B', 'F', 'U', '8', '7', '1']
                  渝BFU871
                  

                  “”.join(result)函数将列表转换为拼接好的字符串,方便结果显示

                  5.3 匹配效果展示

                  height,weight = origin_image.shape[0:2]
                  print(height)
                  print(weight)
                  image_1 = origin_image.copy()
                  cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)
                  #设置需要显示的字体
                  fontpath = "font/simsun.ttc"
                  font = ImageFont.truetype(fontpath,64)
                  img_pil = Image.fromarray(image_1)
                  draw = ImageDraw.Draw(img_pil)
                  #绘制文字信息
                  draw.text((int(0.2*weight)+25, int(0.75*height)),  "".join(result), font = font, fill = (255, 255, 0))
                  bk_img = np.array(img_pil)
                  print(result)
                  print( "".join(result))
                  plt_show0(bk_img)
                  

                    运行结果:

                  【Python实战】——Python+Opencv是实现车牌自动识别

                  6完整代码

                  # 导入所需模块
                  import cv2
                  from matplotlib import pyplot as plt
                  import os
                  import numpy as np
                  from PIL import ImageFont, ImageDraw, Image
                  # plt显示彩色图片
                  def plt_show0(img):
                      b,g,r = cv2.split(img)
                      img = cv2.merge([r, g, b])
                      plt.imshow(img)
                      plt.show()
                      
                  # plt显示灰度图片
                  def plt_show(img):
                      plt.imshow(img,cmap='gray')
                      plt.show()
                      
                  # 图像去噪灰度处理
                  def gray_guss(image):
                      image = cv2.GaussianBlur(image, (3, 3), 0)
                      gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
                      return gray_image
                  # 读取待检测图片
                  origin_image = cv2.imread('D:/image/car3.jpg')
                  # 复制一张图片,在复制图上进行图像操作,保留原图
                  image = origin_image.copy()
                  # 图像去噪灰度处理
                  gray_image = gray_guss(image)
                  # x方向上的边缘检测(增强边缘信息)
                  Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
                  absX = cv2.convertScaleAbs(Sobel_x)
                  image = absX
                  # 图像阈值化操作——获得二值化图
                  ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
                  # 显示灰度图像
                  plt_show(image)
                  # 形态学(从图像中提取对表达和描绘区域形状有意义的图像分量)——闭操作
                  kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
                  image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
                  # 显示灰度图像
                  plt_show(image)
                  # 腐蚀(erode)和膨胀(dilate)
                  kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
                  kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
                  #x方向进行闭操作(抑制暗细节)
                  image = cv2.dilate(image, kernelX)
                  image = cv2.erode(image, kernelX)
                  #y方向的开操作
                  image = cv2.erode(image, kernelY)
                  image = cv2.dilate(image, kernelY)
                  # 中值滤波(去噪)
                  image = cv2.medianBlur(image, 21)
                  # 显示灰度图像
                  plt_show(image)
                  # 获得轮廓
                  contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
                  for item in contours:
                      rect = cv2.boundingRect(item)
                      x = rect[0]
                      y = rect[1]
                      weight = rect[2]
                      height = rect[3]
                      # 根据轮廓的形状特点,确定车牌的轮廓位置并截取图像
                      if (weight > (height * 3)) and (weight < (height * 4.5)):
                          image = origin_image[y:y + height, x:x + weight]
                          plt_show(image)
                  #车牌字符分割
                  # 图像去噪灰度处理
                  gray_image = gray_guss(image)
                  # 图像阈值化操作——获得二值化图   
                  ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
                  plt_show(image)
                  #膨胀操作
                  kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 4))
                  image = cv2.dilate(image, kernel)
                  plt_show(image)
                  # 查找轮廓
                  contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
                  words = []
                  word_images = []
                  #对所有轮廓逐一操作
                  for item in contours:
                      word = []
                      rect = cv2.boundingRect(item)
                      x = rect[0]
                      y = rect[1]
                      weight = rect[2]
                      height = rect[3]
                      word.append(x)
                      word.append(y)
                      word.append(weight)
                      word.append(height)
                      words.append(word)
                  # 排序,车牌号有顺序。words是一个嵌套列表
                  words = sorted(words,key=lambda s:s[0],reverse=False)
                  i = 0
                  #word中存放轮廓的起始点和宽高
                  for word in words:
                      # 筛选字符的轮廓
                      if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 5.5)) and (word[2] > 10):
                          i = i+1
                          if word[2] < 15:
                              splite_image = image[word[1]:word[1] + word[3], word[0]-word[2]:word[0] + word[2]*2]
                          else:
                              splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
                          word_images.append(splite_image)
                          print(i)
                  print(words)
                  for i,j in enumerate(word_images):  
                      plt.subplot(1,7,i+1)
                      plt.imshow(word_images[i],cmap='gray')
                  plt.show()
                  #模版匹配
                  # 准备模板(template[0-9]为数字模板;)
                  template = ['0','1','2','3','4','5','6','7','8','9',
                              'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',
                              '藏','川','鄂','甘','赣','贵','桂','黑','沪','吉','冀','津','晋','京','辽','鲁','蒙','闽','宁',
                              '青','琼','陕','苏','皖','湘','新','渝','豫','粤','云','浙']
                  # 读取一个文件夹下的所有图片,输入参数是文件名,返回模板文件地址列表
                  def read_directory(directory_name):
                      referImg_list = []
                      for filename in os.listdir(directory_name):
                          referImg_list.append(directory_name + "/" + filename)
                      return referImg_list
                  # 获得中文模板列表(只匹配车牌的第一个字符)
                  def get_chinese_words_list():
                      chinese_words_list = []
                      for i in range(34,64):
                          #将模板存放在字典中
                          c_word = read_directory('D:/refer1/'+ template[i])
                          chinese_words_list.append(c_word)
                      return chinese_words_list
                  chinese_words_list = get_chinese_words_list()
                  # 获得英文模板列表(只匹配车牌的第二个字符)
                  def get_eng_words_list():
                      eng_words_list = []
                      for i in range(10,34):
                          e_word = read_directory('D:/refer1/'+ template[i])
                          eng_words_list.append(e_word)
                      return eng_words_list
                  eng_words_list = get_eng_words_list()
                  # 获得英文和数字模板列表(匹配车牌后面的字符)
                  def get_eng_num_words_list():
                      eng_num_words_list = []
                      for i in range(0,34):
                          word = read_directory('D:/refer1/'+ template[i])
                          eng_num_words_list.append(word)
                      return eng_num_words_list
                  eng_num_words_list = get_eng_num_words_list()
                  # 读取一个模板地址与图片进行匹配,返回得分
                  def template_score(template,image):
                      #将模板进行格式转换
                      template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)
                      template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
                      #模板图像阈值化处理——获得黑白图
                      ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
                  #     height, width = template_img.shape
                  #     image_ = image.copy()
                  #     image_ = cv2.resize(image_, (width, height))
                      image_ = image.copy()
                      #获得待检测图片的尺寸
                      height, width = image_.shape
                      # 将模板resize至与图像一样大小
                      template_img = cv2.resize(template_img, (width, height))
                      # 模板匹配,返回匹配得分
                      result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)
                      return result[0][0]
                  # 对分割得到的字符逐一匹配
                  def template_matching(word_images):
                      results = []
                      for index,word_image in enumerate(word_images):
                          if index==0:
                              best_score = []
                              for chinese_words in chinese_words_list:
                                  score = []
                                  for chinese_word in chinese_words:
                                      result = template_score(chinese_word,word_image)
                                      score.append(result)
                                  best_score.append(max(score))
                              i = best_score.index(max(best_score))
                              # print(template[34+i])
                              r = template[34+i]
                              results.append(r)
                              continue
                          if index==1:
                              best_score = []
                              for eng_word_list in eng_words_list:
                                  score = []
                                  for eng_word in eng_word_list:
                                      result = template_score(eng_word,word_image)
                                      score.append(result)
                                  best_score.append(max(score))
                              i = best_score.index(max(best_score))
                              # print(template[10+i])
                              r = template[10+i]
                              results.append(r)
                              continue
                          else:
                              best_score = []
                              for eng_num_word_list in eng_num_words_list:
                                  score = []
                                  for eng_num_word in eng_num_word_list:
                                      result = template_score(eng_num_word,word_image)
                                      score.append(result)
                                  best_score.append(max(score))
                              i = best_score.index(max(best_score))
                              # print(template[i])
                              r = template[i]
                              results.append(r)
                              continue
                      return results
                  word_images_ = word_images.copy()
                  # 调用函数获得结果
                  result = template_matching(word_images_)
                  print(result)
                  # "".join(result)函数将列表转换为拼接好的字符串,方便结果显示
                  print( "".join(result))
                  height,weight = origin_image.shape[0:2]
                  print(height)
                  print(weight)
                  image_1 = origin_image.copy()
                  cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)
                  #设置需要显示的字体
                  fontpath = "font/simsun.ttc"
                  font = ImageFont.truetype(fontpath,64)
                  img_pil = Image.fromarray(image_1)
                  draw = ImageDraw.Draw(img_pil)
                  #绘制文字信息
                  draw.text((int(0.2*weight)+25, int(0.75*height)),  "".join(result), font = font, fill = (255, 255, 0))
                  bk_img = np.array(img_pil)
                  print(result)
                  print( "".join(result))
                  plt_show0(bk_img)
                  

转载请注明来自码农世界,本文标题:《【Python实战】——Python+Opencv是实现车牌自动识别》

百度分享代码,如果开启HTTPS请参考李洋个人博客
每一天,每一秒,你所做的决定都会改变你的人生!

发表评论

快捷回复:

评论列表 (暂无评论,73人围观)参与讨论

还没有评论,来说两句吧...

Top