转载请注明出处: https://blog.csdn.net/weixin_44013533/article/details/138909256
作者:CSDN@|Ringleader|
目录
- Quaternion API 速览
- FromToRotation在Transform中的应用
- LookRotation 中upwards取Vector3.up和 transform.up的区别
- 旋转时如何保持Y轴不变,但朝向目标旋转呢?
- 不同旋转方法案例
- lerp与LerpUnclamped区别
- Quaternion.Slerp 、Quaternion.RotateTowards区别
- Lerp、Slerp比较
- Quaternion * operator
- 总结
主要参考:
- Unity手册 & Quaternion API
- Unity3D - 详解Quaternion类(二)
- 【Unity编程】Unity中关于四元数的API详解
Quaternion API 速览
创建旋转:
- FromToRotation 创建一个从 fromDirection 旋转到 toDirection 的旋转。
- LookRotation 使用指定的 forward 和 upwards 方向创建旋转。
- AngleAxis 创建一个围绕 axis 旋转 angle 度的旋转。
- Angle 返回两个旋转 a 和 b 之间的角度(以度为单位)。(180°以内)
操作旋转:
- Lerp 在 a 和 b 之间插入 t,然后对结果进行标准化处理。参数 t 被限制在 [0, 1] 范围内。
- Slerp 在四元数 a 与 b 之间按比率 t 进行球形插值。参数 t 限制在范围 [0, 1] 内。
- RotateTowards 将旋转 from 向 to 旋转。
Transform 类还提供了一些方法可用于处理 Quaternion 旋转:Transform.Rotate & Transform.RotateAround
FromToRotation在Transform中的应用
Transform中有很多Quaternion的应用,比如获取对象的xyz轴向量在世界坐标系下的表示,就用到了FromToRotation:
///
The red axis of the transform in world space. public Vector3 right { get => this.rotation * Vector3.right; set => this.rotation = Quaternion.FromToRotation(Vector3.right, value); } ///The green axis of the transform in world space. public Vector3 up { get => this.rotation * Vector3.up; set => this.rotation = Quaternion.FromToRotation(Vector3.up, value); } ///Returns a normalized vector representing the blue axis of the transform in world space. public Vector3 forward { get => this.rotation * Vector3.forward; set => this.rotation = Quaternion.LookRotation(value); } LookRotation 中upwards取Vector3.up和 transform.up的区别
public static Quaternion LookRotation (Vector3 forward, Vector3 upwards= Vector3.up);
因为LookRotation 会使对象Z轴与forward参数向量对齐,X 轴与Vector3.Cross(upwards,forward)这个叉乘结果对齐,Y 轴与 Z 和 X 的叉乘(Vector3.Cross(transform.forward,transform.right) )对齐。(注意unity左手坐标系,叉乘方向)
所以会看到当upwards取世界空间的向上和模型空间的向上是有区别的。
或者说,upwards取模型空间的向上时对象可以绕自身z轴旋转,对象状态并不固定。
public class LookRotationTest : MonoBehaviour { public Transform obt_forward; public Transform obt_worldUp; public Transform obt_selfUp; public bool showCrossResult = false;// 验证叉乘方向用 private void Update() { // upwards取世界空间的向上 LookForward(obt_worldUp, obt_forward.position - obt_worldUp.position, Vector3.up); // upwards取模型空间的向上 LookForward(obt_selfUp,obt_forward.position - obt_selfUp.position, obt_selfUp.up); } private void LookForward(Transform obt, Vector3 forward,Vector3 upwards) { obt.rotation = Quaternion.LookRotation(forward, upwards); var position = obt.position; Debug.DrawLine(obt_forward.position, position); Debug.DrawLine(position, position + obt.right * 5, Color.red); Debug.DrawLine(position, position + obt.up * 5, Color.green); Debug.DrawLine(position, position + obt.forward * 5, Color.blue); // 验证叉乘方向, 叉乘结果与LookFoward结果一致 if (showCrossResult) { var X_cross = Vector3.Cross(upwards,forward); var Y_cross = Vector3.Cross(obt.forward,obt.right); Debug.DrawLine(position, position + X_cross * 10, Color.cyan); Debug.DrawLine(position, position + Y_cross * 10, Color.yellow); } } }
旋转时如何保持Y轴不变,但朝向目标旋转呢?
使用Vector3.ProjectOnPlane将目标方向投影到xz平面。
Lookat, FromToRotation and LookRotation?
不同旋转方法案例
下面代码比较了transform.forward 、Transform.LookAt、Quaternion.FromToRotation、LookRotation、Quaternion.RotateTowards、Vector3.ProjectOnPlane等不同方法
public class CompareImmediateAndStep : MonoBehaviour { public Transform turret; public Transform enemy; private string str; private void Update() { var targetTowards = enemy.position - turret.position; // 立刻跟随敌人 if (Input.GetKey(KeyCode.Alpha1)) { turret.forward = targetTowards; str = "使用turret.forward = targetTowards;"; } // 上面本质也是使用FromToRotation方法 if (Input.GetKey(KeyCode.Alpha2)) { turret.rotation = Quaternion.FromToRotation(Vector3.forward, targetTowards); str = "使用turret.rotation = Quaternion.FromToRotation(Vector3.forward, targetTowards);"; } if (Input.GetKey(KeyCode.Alpha3)) { //当FromToRotation的fromDirection参数是forward轴时,可以用LookRotation turret.rotation = Quaternion.LookRotation(targetTowards); str = "turret.rotation = Quaternion.LookRotation(targetTowards);"; } if (Input.GetKey(KeyCode.Alpha4)) { turret.LookAt(enemy.transform); str = "turret.LookAt(enemy.transform);"; } // 插值方式,加入旋转速度 if (Input.GetKey(KeyCode.Alpha5)) { var fromToRotation = Quaternion.LookRotation(targetTowards); turret.rotation = Quaternion.RotateTowards(turret.rotation, fromToRotation, 45 * Time.deltaTime); str = "使用worldUp的Quaternion.RotateTowards"; } // 保持对象Y轴朝向不变,将targetTowards进行投影 if (Input.GetKey(KeyCode.Alpha6)) { var fromToRotation = Quaternion.LookRotation(Vector3.ProjectOnPlane(targetTowards,Vector3.up),Vector3.up); turret.rotation = Quaternion.RotateTowards(turret.rotation, fromToRotation, 45 * Time.deltaTime); str = "保持Y轴朝向不变,将targetTowards进行投影"; } DrawAxis(turret); DrawAxis(enemy); } private void DrawAxis(Transform obt) { DrawAxis(obt, Color.red, Color.green, Color.blue, 5); } private void DrawAxis(Transform obt, Color xc, Color yc, Color zc, float length) { if (obt.gameObject.activeInHierarchy) { var position = obt.position; Debug.DrawLine(position, position + obt.right * length, xc); Debug.DrawLine(position, position + obt.up * length, yc); Debug.DrawLine(position, position + obt.forward * length, zc); } } private Rect rect = new Rect(100, 100, 600, 50); private void OnGUI() { DrawLabel(rect, str); } private static void DrawLabel(Rect rect1, String str) { var style = new GUIStyle { fontSize = 38, wordWrap = true }; GUI.Label(rect1, str, style); } }
lerp与LerpUnclamped区别
区别就是Unclamp不会钳值,还能取负值。
Vector3: Lerp vs LerpUnclamped
Quaternion.Slerp 、Quaternion.RotateTowards区别
RotateTowards本质也是使用了SlerpUnclamped方法,但其旋转速度恒定,不会因target变化而改变。
public static Quaternion RotateTowards(Quaternion from, Quaternion to, float maxDegreesDelta) { float num = Quaternion.Angle(from, to); return (double) num == 0.0 ? to : Quaternion.SlerpUnclamped(from, to, Mathf.Min(1f, maxDegreesDelta / num)); }
这篇帖子 Use Quaternion.RotateTowards() instead of Quaternion.Slerp() 提到了:
如果旋转操作的from和to都已知,使用 Quaternion.Slerp() - 例如打开一扇门或箱子盖。
如果要以恒定角速度转向某物,则使用 Quaternion.RotateTowards() - 例如,在塔防类游戏中要转向塔的炮塔。
Lerp、Slerp比较
Quaternion的插值分析及总结
Lerp求得的是四元数在圆上的弦上的等分,而Slerp求得的是四元数载圆上的圆弧的等分
进行代码验证:
public class SlerpTest : MonoBehaviour { public Transform obtLerp; public Transform obtSlerp; public Transform towardsObt; public bool towardsNotChanged; private Quaternion currentLookRotation,lastLookRotation; private Quaternion initRotationLerp, initRotationSlerp; public float speed = 0.1f; float total = 0.0f; private void Start() { lastLookRotation = Quaternion.LookRotation(towardsObt.position-obtLerp.position); initRotationLerp = obtLerp.rotation; initRotationSlerp = obtSlerp.rotation; } void Update() { CompareSlerpAndLerp(); } private void CompareSlerpAndLerp() { currentLookRotation = Quaternion.LookRotation(towardsObt.position - obtLerp.position); towardsNotChanged = currentLookRotation == lastLookRotation; // 改变朝向时,重置初始位置、重置total if (!towardsNotChanged) { lastLookRotation = currentLookRotation; // 重置执行Lerp、Slerp时的初始旋转 initRotationLerp = obtLerp.rotation; initRotationSlerp = obtSlerp.rotation; total = 0; return; } lastLookRotation = currentLookRotation; total += Time.deltaTime * speed; if (total >= 1.0f) total = 1.0f; obtLerp.rotation = Quaternion.Lerp(initRotationLerp, currentLookRotation, total); obtSlerp.rotation = Quaternion.Slerp(initRotationSlerp, currentLookRotation, total); DrawAxis(obtLerp); DrawAxis(obtSlerp, Color.cyan, Color.magenta, Color.yellow, 10); } private void DrawAxis(Transform obt) { DrawAxis(obt, Color.red, Color.green, Color.blue, 5); } private void DrawAxis(Transform obt,Color xc,Color yc,Color zc,float length) { if (obt.gameObject.activeInHierarchy) { var position = obt.position; Debug.DrawLine(position, position + obt.right * length, xc); Debug.DrawLine(position, position + obt.up * length, yc); Debug.DrawLine(position, position + obt.forward * length, zc); } } private Rect rect = new Rect(100, 100, 600, 50); private void OnGUI() { DrawLabel(rect,"Total:"+total); } private void DrawLabel(Rect rect1, String str) { var style = new GUIStyle { fontSize = 38, wordWrap = true }; GUI.Label(rect1, str, style); } }
如下图,RGB颜色的轴是Lerp方法,青紫黄轴是Slerp方法。可以看到Lerp相对Slerp来说先慢,中间快,最后慢。和上面的弦等分和弧等分理论一致。
Quaternion * operator
关于Quaternion 左乘右乘和坐标系的关系看我这篇:【Unity学习笔记】第十六 World space、Parent space和Self space及Quaternion左乘右乘辨析
总结
本文主要辨析Quaternion中Lerp、Slerp、RotateTowards等方法,并进行代码验证。至此,对Quaternion核心方法的理解已比较清晰,但其中的数学原理比如四元数、和欧拉角的关系、万向锁、逆和共轭等问题还是有待进一步学习。
还没有评论,来说两句吧...