前言:多态是面向对象的三大特性之一。顾名思义, 多态就是多种状态。 那么是什么的多种状态呢? 这里的可能有很多。比如我们去买火车票, 有普通票, 学生票; 又比如我们去旅游, 有儿童票, 有成人票等等。 这些都是多态的例子。 具体转化为我们的编程思想就是:让不同类型的对象去完成相同的事, 这就是多态。
本篇内容主要讲述多态, 多为语法方面的知识点。 适合已经学完继承的友友们观看。
目录
一、多态的相关概念
1.1虚函数
1.2虚函数的重写
1.3虚函数重写的两个例外
1.4override 和 final 的使用
二、重载、重写、隐藏(重定义)的区别
三、如何构成多态
四、抽象类
五、普通继承和接口继承
六、静态绑定和动态绑定
具体什么是多态在前言中已经提到, 正文部分不做赘述。
一、多态的相关概念
1.1虚函数
被virtual关键字修饰的成员函数叫做虚函数。 例如:
//A位基类 class A { public: virtual void func() //定义一个虚函数 { cout << "Afunc()" << endl; } };
需要注意的是, 对于构造函数和析构函数来说。 析构函数可以是虚函数, 但是构造函数不可以是虚函数。
具体原因如下:(建议看完整篇文章和总结虚函数表机制——c++多态底层原理-CSDN博客 之后再来看下面这段解释):
首先:通过之前的学习, 我们知道了, 虚函数的地址是存在虚函数表里面的。 想要调用对应的虚函数, 我们需要先去虚函数表中寻找对应虚函数的地址。 但是虚函数表是在构造函数的初始化列表初始化的。如果构造函数是虚函数, 那么调用构造函数的时候就找不到。 所以构造函数没办法是虚函数。
1.2虚函数的重写
虚函数的重写就是: 在派生类当中, 有一个和基类中某一个虚函数函数头的虚函数(函数头就是:函数的返回值, 函数名, 函数的参数列表)。 这个时候就会构成虚函数的重写, 即 子类重写了基类的虚函数。
//A位基类 class A { public: virtual void func() { cout << "Afunc()" << endl; } }; //B类继承A类 class B : public A { public: //重写A类的func函数 virtual void func() //注意, 这里的virtual可以不写, 因为编译器默认这里是加了virtual的 { cout << "Bfunc()" << endl; } };
需要注意的是, 上图中派生类的func可以不加virtual, 因为基类的func是虚函数, 编译器会默认派生类中和他函数头相同的函数也是虚函数。
1.3虚函数重写的两个例外
协变:派生类在重写基类的虚函数的时候, 与基类虚函数返回值类型不同。即基类虚函数返回基类对象的指针或者引用, 派生类虚函数返回派生类对象的指针或者引用的时候, 成为协变。
//A位基类 class A { public: virtual A* func() { cout << "Afunc()" << endl; } }; //B类继承A类 class B : public A { public: //重写A类的func函数 virtual B* func() { cout << "Bfunc()" << endl; } }; //C类继承A类 class C : public A { virtual C* func() { cout << "Cfunc" << endl; } };
析构函数的重写: 基类析构函数如果加了virtual, 那么说明基类的析构函数为虚函数。 这个时候如果派生类的析构函数也就变成了虚函数。 那么成不成为虚函数对于析构函数来说有什么不同呢?
首先我们需要知道的是, 在一个普通的类之中, 编译器其实将析构函数统一处理成为了destructor。
然后, 对于一个派生类来说, 如果它的析构函数不是虚函数。 当我们使用父类的指针构成多态时, 只会析构派生类的一部分:
//A位基类 class A { public: virtual A* func() { cout << "Afunc()" << endl; } //其他动态内存分配的空间 //int* ... //double* ... }; //B类继承A类 class B : public A { public: //重写A类的func函数 virtual B* func() { cout << "Bfunc()" << endl; } //其他动态内存分配的空间 //int* ... //double* ... }; void test_func(A* p) { p->func(); } int main() { C c; A* p = nullptr; p = &c; delete p; return 0; }
如上图, 假如delete p, 那么就只能释放属于C类自己的那一部分。那么属于A类的那一部分将得不到释放。
但是, 如果我们对A类的析构函数使用虚函数。 那么派生类的析构函数也变成了虚函数, 这个时候如果再形成多态。delete p就能将A类和C类都释放掉。
//A位基类 class A { public: virtual A* func() { cout << "Afunc()" << endl; } virtual ~A() {} }; //B类继承A类 class B : public A { public: //重写A类的func函数 virtual B* func() { cout << "Bfunc()" << endl; } virtual ~B() {} };
1.4override 和 final 的使用
先谈override, override是用来检验某个虚函数是否构成了重写。如果没有构成重写, 那么编译器就会报错。
如下为构成重写:
//A位基类 class A { public: virtual void func() { cout << "Afunc()" << endl; } }; //B类继承A类 class B : public A { public: //重写A类的func函数 virtual void func() override { cout << "Bfunc()" << endl; } };
如下为没有构成重写:
//A位基类 class A { public: void func() { cout << "Afunc()" << endl; } }; //B类继承A类 class B : public A { public: //重写A类的func函数 virtual void func() override { cout << "Bfunc()" << endl; } };
二、重载、重写、隐藏(重定义)的区别
- 重载: 函数处于相同作用域内, 并且函数的函数名相同, 参数不同。
- 重写: 函数分别处于基类和派生类中,并且都是虚函数, 并且有相同的函数头
- 隐藏: 继承体系中函数分别处在基类和派生类的作用与之中, 不是虚函数,并且都具有相同的函数头
三、如何构成多态
要形成多态有两个条件:
- 一、虚函数的重写。
- 二、父类的指针指向子类,或者父类的引用引用子类对象。
如下为一个多态的实例:
//A位基类 class A { public: virtual void func() { cout << "Afunc()" << endl; } }; //B类继承A类 class B : public A { public: virtual void func() { cout << "Bfunc()" << endl; } }; //C类继承A类 class C : public A { virtual void func() { cout << "Cfunc" << endl; } }; int main() { C c; B b; A* p = nullptr; p = &c; p->func(); p = &b; p->func(); return 0; }在这串代码中, B类和C类都是A类的派生类。 他们都有对A类中的虚函数func进行重写, 满足条件一。
然后基类的指针p先是指向了C类的对象。 又指向了B类的对象。 构成了父类的指针指向子类, 满足条件二。
所以, 这就是一个多态。
其实, 多态的应用场景多为这样:
//A位基类 class A { public: virtual void func() { cout << "Afunc()" << endl; } }; //B类继承A类 class B : public A { public: virtual void func() { cout << "Bfunc()" << endl; } }; //C类继承A类 class C : public A { virtual void func() { cout << "Cfunc" << endl; } }; void test_func(A* p) { p->func(); } int main() { C c; B b; test_func(&b); test_func(&c); return 0; }
这样, 通过传送不同类型的对象给test_func函数, 就能构成多态。
四、抽象类
如果一个虚函数后面加上 =0, 那么这个虚函数就是纯虚函数, 并且包含这个纯虚函数的类叫做抽象类。
抽象类不能实例化对象。
//A位基类 class A { public: virtual void func() = 0; }; int main() { A a; return 0; }
但是A的派生类如果重写了纯虚函数, 那么就可以这个派生类就可以实例化处对象。
但是如果A的派生类没有重写纯虚函数, 那么这个派生类同样不能实例化处对象。
//A位基类 class A { public: virtual void func() = 0; }; //B类继承A类 class B : public A { public: //重写A类的func函数 }; int main() { B b; return 0; }
五、普通继承和接口继承
普通继承:在继承体系中, 派生类继承了基类的函数, 能够直接使用的是普通继承, 这类继承继承的是基类函数的实现。
接口继承:如果继承了基类的虚函数, 并且重写实现了多态。 那么就是一种接口继承, 多态的体系是一种接口的继承, 具体的函数实现是由派生类自己实现的。
六、静态绑定和动态绑定
静态绑定: 静态绑定又被成为前期绑定, 当程序在编译的时候确定的要调用的函数, 确定了程序要执行的行为, 这个过程成为静态多态。 比如我们使用的函数重载就是静态的多态。
动态绑定: 动态绑定又被成为后期绑定, 当程序在编译之后也就是运行期间根据不同的对象调用不同的函数。 这个过程叫做动态多态, 也就是多态。
------------------------------------------------------
ps: 本篇内容没有讲解多态的原理, 因为多态的原理其实就是虚函数表。 而虚函数表的详细讲解博主之前已经写过一篇: 总结虚函数表机制——c++多态底层原理-CSDN博客 。
在这篇文章中, 博主用自己的理解讲解的虚函数表的机制与实现。 写的不甚严谨, 但是里面的结论却是博主通过调试一步一步验证的来的。感兴趣的友友们可以看一下。
后续补带有虚函数的类的内存大小的计算(暂时有点模糊, 先不写, 而且最近考试比较多。可能要等暑假才能补上这一板块)。
还没有评论,来说两句吧...