SQL进阶(六):通关题:制作一个活动日历

SQL进阶(六):通关题:制作一个活动日历

码农世界 2024-05-23 前端 68 次浏览 0个评论

目录

    • 通关题:用 SQL 制作一个活动日历
      • 任务 1: 制作一个日历
        • Q1: 在 2023 年当中,星期 2 出现的次数和星期 5 出现的次数的关系是?(选择 > 或 < 或 =)
        • Q2: 在 2023 年每个月的5号,10号,15号,20号和 25号 中,星期几的占比最高
        • Q3: 在 2023 年第34周当中,最大的日期是几号?
        • Q4: 在 2023 年所有月份的最后 1 周,一共有多少个周末
        • Q5: 在 2023 年所有月份的 5 号,最长一次连续处在当月同一周是连续几个月?
        • 任务 2: 制作活动日历
          • Q6: 在 2023 年当中,我有几天是可以休假的(没有任何一个邪恶事项正在进行)?
          • Q7: 在 2023 年当中,我最多一天要执行几个邪恶事项?
          • Q8: 在 2023 年当中,我一天需要忙碌多少天?
          • Q9: 在 2023 年当中,有多少个周末我需要执行 >= 2个的事项?
          • Q10: 在 2023 年当中,我的繁忙系数是多少?

            本文是在原本sql闯关的基础上总结得来,加入了自己的理解以及疑问解答(by GPT4)

            原活动链接

            题目6-10参考大佬:云逸天沧丶

            大佬的解题角度

            😈 欢迎来到最后一关!

            上一关中,我们简单介绍了通过 WITH 函数创建 CTE 和 VIEW 构建视图的方式来提升代码的可阅读性和可维护性,而最后的闯关题希望你能够好好利用他们。

            运行下面的代码,准备开始应对挑战吧!

            # 改为 False 可以跳过下面的动画
            watch_anime = True
            
            import itertools
            import threading
            import time
            import sys
            done = False
            #here is the animation
            def animate():
                dots = 1
                for c in itertools.cycle(['|', '/', '-', '\\']):
                    if done:
                        break
                    dots+=1
                    if dots >=30 and dots <150:
                        sys.stdout.write('\r打磨武器中... '+'.'*(dots//9) + c)
                        sys.stdout.flush()
                        time.sleep(0.02)
                        continue
                    if dots >=150 and dots<330:
                        sys.stdout.write('\r准备药水ing... '+'.'*(dots//9) + c)
                        sys.stdout.flush()
                        continue
                    if dots >=330 and dots <=560:
                        sys.stdout.write('\r正在热身... '+'.'*(dots//9) + c)
                        sys.stdout.flush()
                        time.sleep(0.02)
                        continue
                    if dots >560 and dots <=760:
                        sys.stdout.write('\r打开传送门... '+'.'*(dots//9) + c)
                        sys.stdout.flush()
                        time.sleep(0.02)
                        continue
                    sys.stdout.write('\rloading '+'.'*(dots//9) + c)
                    sys.stdout.flush()
                    time.sleep(0.02)
                sys.stdout.flush()
                dots =0 
                print('\rDone!     ')
            if watch_anime:
                t = threading.Thread(target=animate)
                t.start()
                #long process here
                time.sleep(10)
                done = True
            
            Done!     ......................................................................./
            

            通关题:用 SQL 制作一个活动日历

            from IPython.display import Markdown as md
            text = [
                '### 😈:欢迎来到**最后**的闯关题',
                '### 😈: 通过了这一关,就代表你完成了成为 SQL 高手的试炼 🔥',
                '### 😈: 在此前的教程当中,你都借助了和鲸社区上的真实数据集来帮助你联系',
                '### 😈: 然而在这里,你却要面对没有真实数据集的挑战了(发出邪恶的笑声)',
                '### 😈: 那么就让我来告诉你你将面对的是什么吧!',
                
            ]
            tid = 0
            if watch_anime:
                for i in range(5):
                    display(md(text[i]))
                    time.sleep(1.5)
            else:
                 display(md('\n\n\n '.join(text)))
            

            😈:欢迎来到最后的闯关题

            😈: 通过了这一关,就代表你完成了成为 SQL 高手的试炼 🔥

            😈: 在此前的教程当中,你都借助了和鲸社区上的真实数据集来帮助你联系

            😈: 然而在这里,你却要面对没有真实数据集的挑战了(发出邪恶的笑声)

            😈: 那么就让我来告诉你你将面对的是什么吧!

            任务 1: 制作一个日历

            😈: 作为一个心思缜密的恶魔,我需要准确的知道每天的日期,来制定我的邪恶计划(发出更加邪恶的笑声)。但是我的手边却没有公元 2023 年的日历!在已知 2023 年 1月 1日是周日的前提下:

            😈: 请通过你学会的 SQL 知识,为我制作出 2023 年一年的日历

            😈: 我需要如下几个信息:

            1. 每天的日期,用 年份-月份-日期 表示(例如 2023-01-01)

            2. 每天是星期几(用数字表示,1 代表星期一,以此类推)

            3. 当前是今年的第几周 (用数字表示,1 代表第一周,以此类推)

            4. 当前是日期是否是本月的最后一个星期 X (例如,2023-07-25 就是本月最后一个星期 2,是的话返回 True,否则返回 False)

            text = [
                '### 🐳:不要害怕!正义的伙伴小鲸来帮忙了(正义的 bgm 响起)',
                '### 🐳:虽然闯关题看起来很可怕,但是不用担心,我这里为你准备了一些装备',
                '### 🐳:还有一些可行的攻略 HINTS ,帮助你理清思路', 
            ]
            if watch_anime:
                for i in range(3):
                    display(md(text[i]))
                    time.sleep(1.5)
            else:
                display(md('\n\n\n'.join(text)))
            

            🐳:不要害怕!正义的伙伴小鲸来帮忙了(正义的 bgm 响起)

            🐳:虽然闯关题看起来很可怕,但是不用担心,我这里为你准备了一些装备

            🐳:还有一些可行的攻略 HINTS ,帮助你理清思路

            🐳:首先,这里是一个从 0 到 364 的数列,你可以用它去制作最基本的日期

            import pandas as pd
            year_range = pd.DataFrame({"index":range(365)})
            year_range.head()
            
            index
            00
            11
            22
            33
            44
            # import calendar
            # from datetime import datetime, timedelta
            # import pandas as pd
            # def create_calendar_with_monday_start(year):
            #     # Create a calendar with Monday as the first day of the week
            #     cal = calendar.Calendar(firstweekday=0)  # Set Sunday as the first day for iteration
            #     calendar_data = []
            #     for month in range(1, 13):
            #         # Use itermonthdates to include days from the adjacent months
            #         month_days = list(cal.itermonthdates(year, month))
            #         # Filter out days not in the current month
            #         filtered_month_days = [day for day in month_days if day.month == month]
                    
            #         for day in filtered_month_days:
            #             # Adjust the weekday to start from Monday (1) to Sunday (7)
            #             week_day = day.weekday() + 1
            #             # Calculate the week number with Monday as the first day of the week
            #             if day.weekday() == 6:  # Sunday
            #                 # If it's Sunday, treat it as the end of the week
            #                 week_number = int(day.strftime('%W')) + 1
            #             else:
            #                 # For other days, shift to start the week on Monday
            #                 week_number = int((day - timedelta(days=week_day - 1)).strftime('%W')) + 1
            #             # Check if this day is the last occurrence of this weekday in the month
            #             is_last_week_x = ((day + timedelta(days=7)).month != month)
            #             calendar_data.append({
            #                 "date": day.strftime('%Y-%m-%d'),
            #                 "week_day": week_day,
            #                 "week_number": week_number,
            #                 "is_last_week_x": is_last_week_x
            #             })
            #     return calendar_data
            # # Generate the calendar for 2023 with adjusted week starts
            # adjusted_calendar_2023 = create_calendar_with_monday_start(2023)
            # adjusted_calendar_df = pd.DataFrame(adjusted_calendar_2023)
            # adjusted_calendar_df.head(10)  # Display the first 10 rows to check
            
            dateweek_dayweek_numberis_last_week_x
            02023-01-0171False
            12023-01-0212False
            22023-01-0322False
            32023-01-0432False
            42023-01-0542False
            52023-01-0652False
            62023-01-0762False
            72023-01-0872False
            82023-01-0913False
            92023-01-1023False
            # 更方便的创建方式
            import pandas as pd
            from math import ceil
            import sqlite3
            df = pd.DataFrame({'datetime':pd.date_range('2023-01-01','2023-12-31')})
            df['date'] = df['datetime'].dt.date
            df['year'] = df['datetime'].dt.year
            df['month'] = df['datetime'].dt.month
            df['day'] = df['datetime'].dt.day
            df['week_day'] = df['datetime'].dt.weekday
            df['day_of_year'] = df['datetime'].dt.dayofyear
            df['week_number'] = df['datetime'].dt.isocalendar().week
            #调整weekday
            df['week_day'] = df['week_day'] + 1
            #调整week
            df['week_number'][0] = 0
            df['week_number'] = df['week_number'] + 1
            #获取当月的第几周
            def week_of_month(dt, start_date=0):
              first_day = dt.replace(day=1)  # 本月第一天
              adjusted_dom = dt.day + (first_day.weekday() + start_date) % 7
              return int(ceil(adjusted_dom / 7.0))
            #写入DataFrame
            WOM = []
            for i in range(len(df)):
              WOM.append(week_of_month(df.loc[i,'datetime']))
            df['week_of_month'] = WOM
            df.head()
            
            datetimedateyearmonthdayweek_dayday_of_yearweek_numberweek_of_month
            02023-01-012023-01-012023117111
            12023-01-022023-01-022023121222
            22023-01-032023-01-032023132322
            32023-01-042023-01-042023143422
            42023-01-052023-01-052023154522
            df.dtypes
            
            datetime         datetime64[ns]
            date                     object
            year                      int64
            month                     int64
            day                       int64
            week_day                  int64
            day_of_year               int64
            week_number              UInt32
            week_of_month             int64
            dtype: object
            
            # adjusted_calendar_df.to_excel('demo.xlsx',index = False)
            
            # 导入库
            from IPython.display import Markdown as md
            from matplotlib import pyplot as plt
            import sqlite3
            import pandas as pd
            import numpy as np
            import json
            from copy import deepcopy
            from datetime import datetime
            plt.rcParams['font.sans-serif'] = ['SimHei']
            plt.rcParams['axes.unicode_minus'] = False
            
            # 将数据写入一张名为 calendar_table 的表
            with sqlite3.connect('calendar_table.db') as conn:
                df.to_sql('calendar_table',con = conn,if_exists='replace',index = False)
                
            connection = sqlite3.connect('calendar_table.db')
            

            提问:conn 以及 connection 都是在建立游标以便连接数据库吗

            回答:在Python中使用 sqlite3 库与SQLite数据库交互时,conn 和 connection 都是数据库连接对象。它们不是游标,而是用来建立和管理与数据库的连接。你可以通过这些连接对象来创建游标对象,游标则用于执行SQL命令和管理交互过程。

            这里是一个简单的示例说明如何使用连接对象创建游标,并通过游标执行SQL命令:

            import sqlite3
            # 建立数据库连接
            conn = sqlite3.connect('example.db')
            # 使用连接对象创建游标
            cursor = conn.cursor()
            # 通过游标执行SQL命令
            cursor.execute("CREATE TABLE IF NOT EXISTS test (id INTEGER PRIMARY KEY, name TEXT)")
            cursor.execute("INSERT INTO test (name) VALUES ('Alice')")
            # 提交事务
            conn.commit()
            # 关闭游标
            cursor.close()
            # 关闭连接
            conn.close()
            

            在这个例子中,conn 是一个连接对象,用于管理数据库的连接。cursor 是通过 conn.cursor() 创建的游标对象,用于执行SQL命令。在执行完命令后,使用 conn.commit() 来提交事务,确保数据被写入数据库。最后,使用 cursor.close() 和 conn.close() 关闭游标和连接,释放资源。

            提问:类似这样的的语法似乎并没有按照上述方式创建游标:connection.execute(query).fetchall()

            回答:确实,您提到的 connection.execute(query).fetchall() 这种语法实际上是一个快捷方式,它在没有显式创建游标对象的情况下执行了SQL查询。

            在Python的 sqlite3 库中,当你使用 connection.execute() 方法时,它内部自动创建了一个临时的游标对象,执行了SQL语句,并立即返回结果。这种方法对于执行单个查询非常方便,因为它省去了手动创建和管理游标对象的步骤。

            这是一个具体的例子,展示了如何使用这种快捷方法执行查询并获取结果:

            import sqlite3
            # 建立数据库连接
            connection = sqlite3.connect('example.db')
            # 直接使用连接执行查询并获取所有结果
            query = "SELECT * FROM test"
            results = connection.execute(query).fetchall()
            # 打印查询结果
            for row in results:
                print(row)
            # 关闭连接
            connection.close()
            

            在这个例子中,通过 connection.execute(query) 直接执行SQL命令,并通过 fetchall() 获取所有行的数据。这种方法简化了代码,适用于执行简单的SQL操作,但如果需要进行更复杂的事务管理或是多次使用同一个游标执行多条语句,通常还是建议显式创建游标。

            🐳:其次,我们在教程当中所以使用的 SQLite 可以支持对于一个修改某个具体的日期的,例如 DATE(‘2023-01-01’,‘+1 days’) 参考这里的文档,这个文档里面有很多隐藏秘籍,仔细阅读和消化会让你功力大增哦

            🐳:一些 HINTS:

            1. 可以从已知的,固定的日期出发,首先搭起完整的日期表

            2. “周”是一个具有周期性概念的数据字段,记住这一点

            3. 一个月的第一周可以是另一个月的最后一周

            dateweek_day week_number is_last_week_x

            02023-01-01 7 1 False

            12023-01-02 1 2 False

            22023-01-03 2 2 False

            😈: 既然你获得了外界的帮助,那么我需要在结果要求你:

            Q1: 在 2023 年当中,星期 2 出现的次数和星期 5 出现的次数的关系是?(选择 > 或 < 或 =)
            query = '''
            SELECT
                week_day,
                count(*)
            FROM calendar_table
            GROUP BY week_day
            '''
            result = connection.execute(query).fetchall()
            result
            
            [(1, 52), (2, 52), (3, 52), (4, 52), (5, 52), (6, 52), (7, 53)]
            
            # ...your code...
            a1 = '='  # 在 '' 中填入你的结果,如 a1 = '>' 代表星期 2 出现的次数大于星期 5 出现的次数
            
            Q2: 在 2023 年每个月的5号,10号,15号,20号和 25号 中,星期几的占比最高
            query = '''
            SELECT
                week_day,
                count(*)
            FROM calendar_table
            WHERE 
                strftime('%d',date) IN ('05','10','15','20','25')
            GROUP BY
                week_day
            '''
            result = connection.execute(query).fetchall()
            result
            
            [(1, 9), (2, 8), (3, 10), (4, 7), (5, 9), (6, 8), (7, 9)]
            
            # ...your code...
            a2 = '3' # 在 '' 中填入你的结果,如 a2 = '2' 代表星期 2 的占比最高
            
            Q3: 在 2023 年第34周当中,最大的日期是几号?
            query = '''
            SELECT
                MAX(date)
            FROM
                calendar_table
            WHERE
                week_number = '34'
            '''
            result = connection.execute(query).fetchall()
            result
            
            [('2023-08-20',)]
            
            # ...your code...
            a3 = '20'  # 在 '' 中填入你的结果,如 a3 = '23' 代表当周日期最大的是 23 号
            
            Q4: 在 2023 年所有月份的最后 1 周,一共有多少个周末

            就是求当月的最后一天是周几,周六算1天,周日算两天

            query = '''
            With MonthlyLastDays AS(
                SELECT
                    strftime('%Y-%m',date) AS year_month,
                    MAX(date) AS last_day,
                    (CASE
                        WHEN week_day = '6' THEN 1
                        WHEN week_day = '7' THEN 2
                        ELSE 0
                    END) AS week_day_of_value
                FROM
                    calendar_table
                GROUP BY
                    year_month
            )
            SELECT
                SUM(week_day_of_value) as weekend_of_month_tail
            FROM 
                MonthlyLastDays
            '''
            result = connection.execute(query).fetchall()
            result
            
            [(5,)]
            
            # ...your code...
            a4 = '5'  # 在 '' 中填入你的结果,如 a4 = '5' 代表有个 5 个周末(周六,周日分开计算,例如 2个周六 和 3个周日 = 5个周末)
            
            Q5: 在 2023 年所有月份的 5 号,最长一次连续处在当月同一周是连续几个月?

            例如:2,3,4,5月份的 5 号都处于当月的第 2 周, 则最长一次为 4

            # 提取2023年每个月5号的date、week_day和week_number
            query = '''
            SELECT
                date,
                week_of_month
            FROM
                calendar_table
            WHERE
                strftime('%Y-%m-%d',date) LIKE '2023-__-05'
            '''
            result = connection.execute(query).fetchall()
            result
            
            [('2023-01-05', 2),
             ('2023-02-05', 1),
             ('2023-03-05', 1),
             ('2023-04-05', 2),
             ('2023-05-05', 1),
             ('2023-06-05', 2),
             ('2023-07-05', 2),
             ('2023-08-05', 1),
             ('2023-09-05', 2),
             ('2023-10-05', 2),
             ('2023-11-05', 1),
             ('2023-12-05', 2)]
            
            # 分析连续相同week_of_month的最长长度
            max_length = 0
            current_length = 1
            for i in range(1, len(result)):
                if result[i][1] == result[i-1][1]:
                    current_length += 1
                    max_length = max(max_length, current_length)
                else:
                    current_length = 1  # 重置连续长度
            max_length = max(max_length, current_length)  # 最后一次比较后更新最大长度
            print("最长连续处在当月同一周的月份数是:", max_length)
            
            最长连续处在当月同一周的月份数是: 2
            

            # ...your code...
            a5 = '2'  # 在 '' 中填入你的结果,如 a5 = '5' 代表可以最长一次是 5 个月连续
            

            任务 2: 制作活动日历

            😈: 现在我手上拿到了你的日历了,你是一个值得尊敬的对手,但是我需要将我的邪恶计划安排在日历上,这样我才能所向披靡!

            😈: 现在我的手上有一份邪恶 TO-DO 清单,里面有如下的字段:

            event: 我的计划名称

            start: 邪恶事项开始的日期

            duration: 邪恶事项持续的天数(包括开始的日期)

            importance:邪恶事项的重要性

            # 😈: 我的邪恶 TO-DO 清单
            events = [
                '打磨新的兵器',
                 '看1月新番',
                '修补被破坏的城堡',
                '安排小恶魔去收保护费',
                '冶炼最强的金属',
                '召集邪恶手下开会',
                '搜集有关英雄的情报',
                '设计恶魔标志',
                '看4月新番',
                '召唤恶魔仪式',
                '策划一场恶作剧',
                '看7月新番',
                '编写邪恶手册',
                '破坏隔壁恶魔的商业计划',
                '招募新的邪恶成员',
                '开展黑暗仪式',
                '夺取宝藏',
                '收集魔法物品',
                '引发恐慌和混乱',
                '发展邪恶科技',
                '看10月新番',
                '制造毒药和诅咒',
                '建立邪恶王国',
                '征服世界!',
                '破坏英雄的声誉',
                '召唤邪恶精灵军团',
                '设计毁灭性的邪恶装置',
                '复活强大的邪恶巫师',
                '制造无法抵挡的瘟疫',
                '建立邪恶的秘密基地',
                '发动黑暗能量的仪式',
                '统治邪恶的次元',
                '煽动反抗军',
                '引发邪恶的大洪水',
                '驱使野兽攻击无辜的人们',
                '发起致命的黑市交易',
                '堕落正义的守护者',
                '启动毁灭性的计时器',
                '发展邪恶的生化科技',
                '洗脑城市居民',
                '释放黑暗之魂',
                '摧毁圣地和神殿',
                '追捕并抹杀英雄',
            ]
            start_date = [
                '2023-02-10',
                '2023-05-02',
                '2023-02-23',
                '2023-03-17',
                '2023-04-29',
                '2023-09-05',
                '2023-05-12',
                '2023-03-22',
                '2023-04-09',
                '2023-07-13',
                '2023-09-10',
                '2023-07-05',
                '2023-08-31',
                '2023-10-08',
                '2023-08-28',
                '2023-09-01',
                '2023-09-07',
                '2023-08-22',
                '2023-11-18',
                '2023-12-11',
                '2023-10-12',
                '2023-01-03',
                '2023-06-21',
                '2023-12-28',    
                '2023-08-18',
                '2023-06-11',
                '2023-12-04',
                '2023-04-16',
                '2023-11-09',
                '2023-07-26',
                '2023-05-21',
                '2023-12-31',
                '2023-01-09',
                '2023-03-29',
                '2023-07-19',
                '2023-03-22',
                '2023-10-04',
                '2023-08-14',
                '2023-11-30',
                '2023-04-19',
                '2023-02-11',
                '2023-01-02',
                '2023-09-06',
            ]
            duration = [
                17, 8, 31, 14, 28, 20, 24, 5, 9, 26
                , 12, 21, 15, 30, 11, 4, 25, 5,
                18, 16, 10, 23, 29, 6, 27, 13, 22, 6,
                32, 7, 25, 6, 12, 29, 13, 22, 9, 14,
                21, 8, 30, 4, 19
            ]
            importance = [
                2, 3, 1, 0, 1, 0, 1, 2, 3, 2,
                2, 3, 0, 0, 3, 1, 3, 1, 3, 2,
                3, 0, 1, 2, 1, 3, 2, 1, 0, 0,
                1, 1, 3, 0, 2, 2, 0, 3, 2, 3,
                3, 2, 0
            ]
            evil = pd.DataFrame({'event':events,'start_date':start_date,'duration':duration,'importance':importance})
            evil
            
            eventstart_datedurationimportance
            0打磨新的兵器2023-02-10172
            1看1月新番2023-05-0283
            2修补被破坏的城堡2023-02-23311
            3安排小恶魔去收保护费2023-03-17140
            4冶炼最强的金属2023-04-29281
            5召集邪恶手下开会2023-09-05200
            6搜集有关英雄的情报2023-05-12241
            7设计恶魔标志2023-03-2252
            8看4月新番2023-04-0993
            9召唤恶魔仪式2023-07-13262
            10策划一场恶作剧2023-09-10122
            11看7月新番2023-07-05213
            12编写邪恶手册2023-08-31150
            13破坏隔壁恶魔的商业计划2023-10-08300
            14招募新的邪恶成员2023-08-28113
            15开展黑暗仪式2023-09-0141
            16夺取宝藏2023-09-07253
            17收集魔法物品2023-08-2251
            18引发恐慌和混乱2023-11-18183
            19发展邪恶科技2023-12-11162
            20看10月新番2023-10-12103
            21制造毒药和诅咒2023-01-03230
            22建立邪恶王国2023-06-21291
            23征服世界!2023-12-2862
            24破坏英雄的声誉2023-08-18271
            25召唤邪恶精灵军团2023-06-11133
            26设计毁灭性的邪恶装置2023-12-04222
            27复活强大的邪恶巫师2023-04-1661
            28制造无法抵挡的瘟疫2023-11-09320
            29建立邪恶的秘密基地2023-07-2670
            30发动黑暗能量的仪式2023-05-21251
            31统治邪恶的次元2023-12-3161
            32煽动反抗军2023-01-09123
            33引发邪恶的大洪水2023-03-29290
            34驱使野兽攻击无辜的人们2023-07-19132
            35发起致命的黑市交易2023-03-22222
            36堕落正义的守护者2023-10-0490
            37启动毁灭性的计时器2023-08-14143
            38发展邪恶的生化科技2023-11-30212
            39洗脑城市居民2023-04-1983
            40释放黑暗之魂2023-02-11303
            41摧毁圣地和神殿2023-01-0242
            42追捕并抹杀英雄2023-09-06190
            evil.dtypes
            
            event         object
            start_date    object
            duration       int64
            importance     int64
            dtype: object
            

            TODO清单表

            直接学习套用社区大佬的结题方法

            1.先根据start_date和duration生成对应的end_date;

            2.然后将整个表转化成【日期,事件,分数】的排列形式;

            3.新增了一列状态列,展示该任务在该日期下是 开始/进行/结束。

            #生成end_date
            evil['start_date'] = pd.to_datetime(evil['start_date']) # 将 evil DataFrame中的 start_date 列从字符串或其他格式转换为Pandas的日期时间格式
            evil['end_date'] = evil['start_date'] + pd.to_timedelta(evil['duration'], unit='d') # pd.to_timedelta 用于将持续天数转换为时间差,以便加到起始日期上。
            #转化表格形式
            evil1 = pd.DataFrame({'date':[],'event':[],'importance':[]}) # 初始化了一个新的DataFrame evil1,其中包含空的 date、event 和 importance 列
            for i in range(len(evil)):
                df2 = pd.DataFrame({
                    'date':pd.date_range(evil.loc[i,'start_date'],evil.loc[i,'end_date']),
                    'event':evil.loc[i,'event'],
                    'importance':evil.loc[i,'importance']
                })
                '''
                上述代码遍历 evil DataFrame中的每一行(每个事件),并为每个事件创建一个新的DataFrame df2。
                df2 中的 date 列是从该事件的起始日期到结束日期的完整日期范围。
                event 和 importance 列分别用该事件的名称和重要性填充。
                '''
                # 为每一天标记描述
                for x in range(len(df2)):
                    if df2.loc[x,'date'] == evil.loc[i,'start_date']:
                        desc = '开始'
                    elif df2.loc[x,'date'] == evil.loc[i,'end_date']:
                        desc = '结束'
                    else:
                        desc = '进行'
                    df2.loc[x,'desc'] = desc
                evil1 = pd.concat([evil1,df2]) # 合并到主DataFrame
            # 调整日期和数据类型格式
            evil1['date'] = pd.to_datetime(evil1['date']).dt.date # 从字符串或其他格式转换为Pandas的日期时间格式后再转化为日期格式
            evil1['importance'] = evil1['importance'].astype('int')
            evil1.head()
            
            dateeventimportancedesc
            02023-02-10打磨新的兵器2开始
            12023-02-11打磨新的兵器2进行
            22023-02-12打磨新的兵器2进行
            32023-02-13打磨新的兵器2进行
            42023-02-14打磨新的兵器2进行
            evil1.dtypes
            
            date          object
            event         object
            importance     int32
            desc          object
            dtype: object
            
            # 将数据写入一张名为 evil_table 的表
            with sqlite3.connect('calendar_table.db') as conn:
                evil1.to_sql('evil_table',con = conn,if_exists='replace',index = False)
                
            connection = sqlite3.connect('calendar_table.db')
            

            😈: 然后你需要回答以下的几个问题:

            Q6: 在 2023 年当中,我有几天是可以休假的(没有任何一个邪恶事项正在进行)?

            思路:calendar_table(简称t1) 关联 evil_table(简称t2),关联时t2表需要舍弃状态为“结束”的行(任务是在结束标志的前一天结束)。关联后筛选t2的date为null的行计数,即可得出答案

            query = '''
            SELECT
                count(t1.date)
            FROM
                calendar_table AS t1
            LEFT JOIN(
                SELECT DISTINCT date FROM evil_table WHERE desc !='结束'
            )AS t2
            ON t1.date = t2.date
            WHERE t2.date is null
            '''
            result = connection.execute(query).fetchall()
            result
            
            [(29,)]
            
            # ...your code...
            a6 = '29'  # 在 '' 中填入你的结果,如 a6 = '5' 代表我有 5 天可以休假
            
            Q7: 在 2023 年当中,我最多一天要执行几个邪恶事项?

            思路1:以日期分组得到每天的事件数量(注意舍弃状态为“结束”的行),再得到最大的事件数量

            query = '''
            SELECT
                MAX(event_nums)
            FROM
                (SELECT COUNT(event) as event_nums FROM evil_table WHERE desc != '结束' GROUP BY date) as t2
            '''
            result = connection.execute(query).fetchall()
            result
            
            [(6,)]
            
            # ...your code...
            a7 = '6'  # 在 '' 中填入你的结果,如 a7 = '5' 代表有一天需要执行 5 个事项
            
            Q8: 在 2023 年当中,我一天需要忙碌多少天?

            忙碌的定义:1 天有 >= 2个事项正在执行 或 未来 3天内有 1 个重要性 >1 的事项要结束 或 未来 3 天内有 1 个重要性 > 2 的事项要开始

            关于“未来 N 天” 的定义:假设一个满足条件的事件在 2023-01-06 结束/开始,那么它在 2023-01-03 的 未来 3 天之内,但是不在 2023-01-06 的“未来 3 天之内”

            思路:由TODO清单表分别构建3个负荷忙碌定义的子表,然后用日期表作为基表取关联,然后进行计数就好了。

            query = '''
            SELECT t.date, DATE(t.date,'+3 days'),SUM(t1.event_num),COUNT(t2.event),COUNT(t3.event)
            FROM calendar_table AS t
            LEFT JOIN (
              SELECT date,COUNT(event) event_num FROM evil_table WHERE desc!='结束' GROUP BY date
            ) AS t1 on t1.date = t.date
            LEFT JOIN (
              SELECT date,event FROM evil_table WHERE importance>1 AND desc = '结束'
            ) AS t2 on t2.date BETWEEN DATE(t.date,'+1 days') AND DATE(t.date,'+3 days')
            LEFT JOIN (
              SELECT date,event FROM evil_table WHERE importance>2 AND desc = '开始'
            ) AS t3 on t3.date BETWEEN DATE(t.date,'+1 days') AND DATE(t.date,'+3 days')
            GROUP BY t.date
            HAVING SUM(t1.event_num) >=2 or COUNT(t2.event)>0 or COUNT(t3.event)>0
            order by t.date
            '''
            result = connection.execute(query).fetchall()
            result
            
            [('2023-01-03', '2023-01-06', 2, 1, 0),
             ('2023-01-04', '2023-01-07', 2, 1, 0),
             ('2023-01-05', '2023-01-08', 2, 1, 0),
             ('2023-01-06', '2023-01-09', 1, 0, 1),
             ('2023-01-07', '2023-01-10', 1, 0, 1),
             ('2023-01-08', '2023-01-11', 1, 0, 1),
             ('2023-01-09', '2023-01-12', 2, 0, 0),
             ('2023-01-10', '2023-01-13', 2, 0, 0),
             ('2023-01-11', '2023-01-14', 2, 0, 0),
             ('2023-01-12', '2023-01-15', 2, 0, 0),
             ('2023-01-13', '2023-01-16', 2, 0, 0),
             ('2023-01-14', '2023-01-17', 2, 0, 0),
             ('2023-01-15', '2023-01-18', 2, 0, 0),
             ('2023-01-16', '2023-01-19', 2, 0, 0),
             ('2023-01-17', '2023-01-20', 2, 0, 0),
             ('2023-01-18', '2023-01-21', 2, 1, 0),
             ('2023-01-19', '2023-01-22', 2, 1, 0),
             ('2023-01-20', '2023-01-23', 2, 1, 0),
             ('2023-02-08', '2023-02-11', None, 0, 1),
             ('2023-02-09', '2023-02-12', None, 0, 1),
             ('2023-02-10', '2023-02-13', 1, 0, 1),
             ('2023-02-11', '2023-02-14', 2, 0, 0),
             ('2023-02-12', '2023-02-15', 2, 0, 0),
             ('2023-02-13', '2023-02-16', 2, 0, 0),
             ('2023-02-14', '2023-02-17', 2, 0, 0),
             ('2023-02-15', '2023-02-18', 2, 0, 0),
             ('2023-02-16', '2023-02-19', 2, 0, 0),
             ('2023-02-17', '2023-02-20', 2, 0, 0),
             ('2023-02-18', '2023-02-21', 2, 0, 0),
             ('2023-02-19', '2023-02-22', 2, 0, 0),
             ('2023-02-20', '2023-02-23', 2, 0, 0),
             ('2023-02-21', '2023-02-24', 2, 0, 0),
             ('2023-02-22', '2023-02-25', 2, 0, 0),
             ('2023-02-23', '2023-02-26', 3, 0, 0),
             ('2023-02-24', '2023-02-27', 3, 1, 0),
             ('2023-02-25', '2023-02-28', 3, 1, 0),
             ('2023-02-26', '2023-03-01', 3, 1, 0),
             ('2023-02-27', '2023-03-02', 2, 0, 0),
             ('2023-02-28', '2023-03-03', 2, 0, 0),
             ('2023-03-01', '2023-03-04', 2, 0, 0),
             ('2023-03-02', '2023-03-05', 2, 0, 0),
             ('2023-03-03', '2023-03-06', 2, 0, 0),
             ('2023-03-04', '2023-03-07', 2, 0, 0),
             ('2023-03-05', '2023-03-08', 2, 0, 0),
             ('2023-03-06', '2023-03-09', 2, 0, 0),
             ('2023-03-07', '2023-03-10', 2, 0, 0),
             ('2023-03-08', '2023-03-11', 2, 0, 0),
             ('2023-03-09', '2023-03-12', 2, 0, 0),
             ('2023-03-10', '2023-03-13', 2, 1, 0),
             ('2023-03-11', '2023-03-14', 2, 1, 0),
             ('2023-03-12', '2023-03-15', 2, 1, 0),
             ('2023-03-17', '2023-03-20', 2, 0, 0),
             ('2023-03-18', '2023-03-21', 2, 0, 0),
             ('2023-03-19', '2023-03-22', 2, 0, 0),
             ('2023-03-20', '2023-03-23', 2, 0, 0),
             ('2023-03-21', '2023-03-24', 2, 0, 0),
             ('2023-03-22', '2023-03-25', 4, 0, 0),
             ('2023-03-23', '2023-03-26', 4, 0, 0),
             ('2023-03-24', '2023-03-27', 4, 1, 0),
             ('2023-03-25', '2023-03-28', 4, 1, 0),
             ('2023-03-26', '2023-03-29', 3, 1, 0),
             ('2023-03-27', '2023-03-30', 2, 0, 0),
             ('2023-03-28', '2023-03-31', 2, 0, 0),
             ('2023-03-29', '2023-04-01', 3, 0, 0),
             ('2023-03-30', '2023-04-02', 3, 0, 0),
             ('2023-03-31', '2023-04-03', 2, 0, 0),
             ('2023-04-01', '2023-04-04', 2, 0, 0),
             ('2023-04-02', '2023-04-05', 2, 0, 0),
             ('2023-04-03', '2023-04-06', 2, 0, 0),
             ('2023-04-04', '2023-04-07', 2, 0, 0),
             ('2023-04-05', '2023-04-08', 2, 0, 0),
             ('2023-04-06', '2023-04-09', 2, 0, 1),
             ('2023-04-07', '2023-04-10', 2, 0, 1),
             ('2023-04-08', '2023-04-11', 2, 0, 1),
             ('2023-04-09', '2023-04-12', 3, 0, 0),
             ('2023-04-10', '2023-04-13', 3, 1, 0),
             ('2023-04-11', '2023-04-14', 3, 1, 0),
             ('2023-04-12', '2023-04-15', 3, 1, 0),
             ('2023-04-13', '2023-04-16', 2, 0, 0),
             ('2023-04-14', '2023-04-17', 2, 0, 0),
             ('2023-04-15', '2023-04-18', 2, 1, 0),
             ('2023-04-16', '2023-04-19', 3, 1, 1),
             ('2023-04-17', '2023-04-20', 3, 1, 1),
             ('2023-04-18', '2023-04-21', 2, 0, 1),
             ('2023-04-19', '2023-04-22', 3, 0, 0),
             ('2023-04-20', '2023-04-23', 3, 0, 0),
             ('2023-04-21', '2023-04-24', 3, 0, 0),
             ('2023-04-22', '2023-04-25', 2, 0, 0),
             ('2023-04-23', '2023-04-26', 2, 0, 0),
             ('2023-04-24', '2023-04-27', 2, 1, 0),
             ('2023-04-25', '2023-04-28', 2, 1, 0),
             ('2023-04-26', '2023-04-29', 2, 1, 0),
             ('2023-04-29', '2023-05-02', 1, 0, 1),
             ('2023-04-30', '2023-05-03', 1, 0, 1),
             ('2023-05-01', '2023-05-04', 1, 0, 1),
             ('2023-05-02', '2023-05-05', 2, 0, 0),
             ('2023-05-03', '2023-05-06', 2, 0, 0),
             ('2023-05-04', '2023-05-07', 2, 0, 0),
             ('2023-05-05', '2023-05-08', 2, 0, 0),
             ('2023-05-06', '2023-05-09', 2, 0, 0),
             ('2023-05-07', '2023-05-10', 2, 1, 0),
             ('2023-05-08', '2023-05-11', 2, 1, 0),
             ('2023-05-09', '2023-05-12', 2, 1, 0),
             ('2023-05-12', '2023-05-15', 2, 0, 0),
             ('2023-05-13', '2023-05-16', 2, 0, 0),
             ('2023-05-14', '2023-05-17', 2, 0, 0),
             ('2023-05-15', '2023-05-18', 2, 0, 0),
             ('2023-05-16', '2023-05-19', 2, 0, 0),
             ('2023-05-17', '2023-05-20', 2, 0, 0),
             ('2023-05-18', '2023-05-21', 2, 0, 0),
             ('2023-05-19', '2023-05-22', 2, 0, 0),
             ('2023-05-20', '2023-05-23', 2, 0, 0),
             ('2023-05-21', '2023-05-24', 3, 0, 0),
             ('2023-05-22', '2023-05-25', 3, 0, 0),
             ('2023-05-23', '2023-05-26', 3, 0, 0),
             ('2023-05-24', '2023-05-27', 3, 0, 0),
             ('2023-05-25', '2023-05-28', 3, 0, 0),
             ('2023-05-26', '2023-05-29', 3, 0, 0),
             ('2023-05-27', '2023-05-30', 2, 0, 0),
             ('2023-05-28', '2023-05-31', 2, 0, 0),
             ('2023-05-29', '2023-06-01', 2, 0, 0),
             ('2023-05-30', '2023-06-02', 2, 0, 0),
             ('2023-05-31', '2023-06-03', 2, 0, 0),
             ('2023-06-01', '2023-06-04', 2, 0, 0),
             ('2023-06-02', '2023-06-05', 2, 0, 0),
             ('2023-06-03', '2023-06-06', 2, 0, 0),
             ('2023-06-04', '2023-06-07', 2, 0, 0),
             ('2023-06-08', '2023-06-11', 1, 0, 1),
             ('2023-06-09', '2023-06-12', 1, 0, 1),
             ('2023-06-10', '2023-06-13', 1, 0, 1),
             ('2023-06-11', '2023-06-14', 2, 0, 0),
             ('2023-06-12', '2023-06-15', 2, 0, 0),
             ('2023-06-13', '2023-06-16', 2, 0, 0),
             ('2023-06-14', '2023-06-17', 2, 0, 0),
             ('2023-06-21', '2023-06-24', 2, 1, 0),
             ('2023-06-22', '2023-06-25', 2, 1, 0),
             ('2023-06-23', '2023-06-26', 2, 1, 0),
             ('2023-07-02', '2023-07-05', 1, 0, 1),
             ('2023-07-03', '2023-07-06', 1, 0, 1),
             ('2023-07-04', '2023-07-07', 1, 0, 1),
             ('2023-07-05', '2023-07-08', 2, 0, 0),
             ('2023-07-06', '2023-07-09', 2, 0, 0),
             ('2023-07-07', '2023-07-10', 2, 0, 0),
             ('2023-07-08', '2023-07-11', 2, 0, 0),
             ('2023-07-09', '2023-07-12', 2, 0, 0),
             ('2023-07-10', '2023-07-13', 2, 0, 0),
             ('2023-07-11', '2023-07-14', 2, 0, 0),
             ('2023-07-12', '2023-07-15', 2, 0, 0),
             ('2023-07-13', '2023-07-16', 3, 0, 0),
             ('2023-07-14', '2023-07-17', 3, 0, 0),
             ('2023-07-15', '2023-07-18', 3, 0, 0),
             ('2023-07-16', '2023-07-19', 3, 0, 0),
             ('2023-07-17', '2023-07-20', 3, 0, 0),
             ('2023-07-18', '2023-07-21', 3, 0, 0),
             ('2023-07-19', '2023-07-22', 4, 0, 0),
             ('2023-07-20', '2023-07-23', 3, 0, 0),
             ('2023-07-21', '2023-07-24', 3, 0, 0),
             ('2023-07-22', '2023-07-25', 3, 0, 0),
             ('2023-07-23', '2023-07-26', 3, 1, 0),
             ('2023-07-24', '2023-07-27', 3, 1, 0),
             ('2023-07-25', '2023-07-28', 3, 1, 0),
             ('2023-07-26', '2023-07-29', 3, 0, 0),
             ('2023-07-27', '2023-07-30', 3, 0, 0),
             ('2023-07-28', '2023-07-31', 3, 0, 0),
             ('2023-07-29', '2023-08-01', 3, 1, 0),
             ('2023-07-30', '2023-08-02', 3, 1, 0),
             ('2023-07-31', '2023-08-03', 3, 1, 0),
             ('2023-08-01', '2023-08-04', 2, 0, 0),
             ('2023-08-05', '2023-08-08', 1, 1, 0),
             ('2023-08-06', '2023-08-09', 1, 1, 0),
             ('2023-08-07', '2023-08-10', 1, 1, 0),
             ('2023-08-11', '2023-08-14', None, 0, 1),
             ('2023-08-12', '2023-08-15', None, 0, 1),
             ('2023-08-13', '2023-08-16', None, 0, 1),
             ('2023-08-18', '2023-08-21', 2, 0, 0),
             ('2023-08-19', '2023-08-22', 2, 0, 0),
             ('2023-08-20', '2023-08-23', 2, 0, 0),
             ('2023-08-21', '2023-08-24', 2, 0, 0),
             ('2023-08-22', '2023-08-25', 3, 0, 0),
             ('2023-08-23', '2023-08-26', 3, 0, 0),
             ('2023-08-24', '2023-08-27', 3, 0, 0),
             ('2023-08-25', '2023-08-28', 3, 1, 1),
             ('2023-08-26', '2023-08-29', 3, 1, 1),
             ('2023-08-27', '2023-08-30', 2, 1, 1),
             ('2023-08-28', '2023-08-31', 2, 0, 0),
             ('2023-08-29', '2023-09-01', 2, 0, 0),
             ('2023-08-30', '2023-09-02', 2, 0, 0),
             ('2023-08-31', '2023-09-03', 3, 0, 0),
             ('2023-09-01', '2023-09-04', 4, 0, 0),
             ('2023-09-02', '2023-09-05', 4, 0, 0),
             ('2023-09-03', '2023-09-06', 4, 0, 0),
             ('2023-09-04', '2023-09-07', 4, 0, 1),
             ('2023-09-05', '2023-09-08', 4, 1, 1),
             ('2023-09-06', '2023-09-09', 5, 1, 1),
             ('2023-09-07', '2023-09-10', 6, 1, 0),
             ('2023-09-08', '2023-09-11', 5, 0, 0),
             ('2023-09-09', '2023-09-12', 5, 0, 0),
             ('2023-09-10', '2023-09-13', 6, 0, 0),
             ('2023-09-11', '2023-09-14', 6, 0, 0),
             ('2023-09-12', '2023-09-15', 6, 0, 0),
             ('2023-09-13', '2023-09-16', 6, 0, 0),
             ('2023-09-14', '2023-09-17', 5, 0, 0),
             ('2023-09-15', '2023-09-18', 4, 0, 0),
             ('2023-09-16', '2023-09-19', 4, 0, 0),
             ('2023-09-17', '2023-09-20', 4, 0, 0),
             ('2023-09-18', '2023-09-21', 4, 0, 0),
             ('2023-09-19', '2023-09-22', 4, 1, 0),
             ('2023-09-20', '2023-09-23', 4, 1, 0),
             ('2023-09-21', '2023-09-24', 4, 1, 0),
             ('2023-09-22', '2023-09-25', 3, 0, 0),
             ('2023-09-23', '2023-09-26', 3, 0, 0),
             ('2023-09-24', '2023-09-27', 3, 0, 0),
             ('2023-09-29', '2023-10-02', 1, 1, 0),
             ('2023-09-30', '2023-10-03', 1, 1, 0),
             ('2023-10-01', '2023-10-04', 1, 1, 0),
             ('2023-10-08', '2023-10-11', 2, 0, 0),
             ('2023-10-09', '2023-10-12', 2, 0, 1),
             ('2023-10-10', '2023-10-13', 2, 0, 1),
             ('2023-10-11', '2023-10-14', 2, 0, 1),
             ('2023-10-12', '2023-10-15', 3, 0, 0),
             ('2023-10-13', '2023-10-16', 2, 0, 0),
             ('2023-10-14', '2023-10-17', 2, 0, 0),
             ('2023-10-15', '2023-10-18', 2, 0, 0),
             ('2023-10-16', '2023-10-19', 2, 0, 0),
             ('2023-10-17', '2023-10-20', 2, 0, 0),
             ('2023-10-18', '2023-10-21', 2, 0, 0),
             ('2023-10-19', '2023-10-22', 2, 1, 0),
             ('2023-10-20', '2023-10-23', 2, 1, 0),
             ('2023-10-21', '2023-10-24', 2, 1, 0),
             ('2023-11-15', '2023-11-18', 1, 0, 1),
             ('2023-11-16', '2023-11-19', 1, 0, 1),
             ('2023-11-17', '2023-11-20', 1, 0, 1),
             ('2023-11-18', '2023-11-21', 2, 0, 0),
             ('2023-11-19', '2023-11-22', 2, 0, 0),
             ('2023-11-20', '2023-11-23', 2, 0, 0),
             ('2023-11-21', '2023-11-24', 2, 0, 0),
             ('2023-11-22', '2023-11-25', 2, 0, 0),
             ('2023-11-23', '2023-11-26', 2, 0, 0),
             ('2023-11-24', '2023-11-27', 2, 0, 0),
             ('2023-11-25', '2023-11-28', 2, 0, 0),
             ('2023-11-26', '2023-11-29', 2, 0, 0),
             ('2023-11-27', '2023-11-30', 2, 0, 0),
             ('2023-11-28', '2023-12-01', 2, 0, 0),
             ('2023-11-29', '2023-12-02', 2, 0, 0),
             ('2023-11-30', '2023-12-03', 3, 0, 0),
             ('2023-12-01', '2023-12-04', 3, 0, 0),
             ('2023-12-02', '2023-12-05', 3, 0, 0),
             ('2023-12-03', '2023-12-06', 3, 1, 0),
             ('2023-12-04', '2023-12-07', 4, 1, 0),
             ('2023-12-05', '2023-12-08', 4, 1, 0),
             ('2023-12-06', '2023-12-09', 3, 0, 0),
             ('2023-12-07', '2023-12-10', 3, 0, 0),
             ('2023-12-08', '2023-12-11', 3, 0, 0),
             ('2023-12-09', '2023-12-12', 3, 0, 0),
             ('2023-12-10', '2023-12-13', 3, 0, 0),
             ('2023-12-11', '2023-12-14', 3, 0, 0),
             ('2023-12-12', '2023-12-15', 3, 0, 0),
             ('2023-12-13', '2023-12-16', 3, 0, 0),
             ('2023-12-14', '2023-12-17', 3, 0, 0),
             ('2023-12-15', '2023-12-18', 3, 0, 0),
             ('2023-12-16', '2023-12-19', 3, 0, 0),
             ('2023-12-17', '2023-12-20', 3, 0, 0),
             ('2023-12-18', '2023-12-21', 3, 1, 0),
             ('2023-12-19', '2023-12-22', 3, 1, 0),
             ('2023-12-20', '2023-12-23', 3, 1, 0),
             ('2023-12-21', '2023-12-24', 2, 0, 0),
             ('2023-12-22', '2023-12-25', 2, 0, 0),
             ('2023-12-23', '2023-12-26', 2, 1, 0),
             ('2023-12-24', '2023-12-27', 4, 2, 0),
             ('2023-12-25', '2023-12-28', 4, 2, 0),
             ('2023-12-26', '2023-12-29', 1, 1, 0),
             ('2023-12-31', '2024-01-03', 2, 1, 0)]
            
            len(result)
            
            272
            
            # ...your code...
            a8 = '272'  # 在 '' 中填入你的结果,如 a8 = '5' 代表有 5 天忙碌
            
            Q9: 在 2023 年当中,有多少个周末我需要执行 >= 2个的事项?

            例如,某一周的 周六执行 3 个事项,周日执行 1 个事项,则记为 1 个周末(周六算,周日不算)

            思路:就是求有多少个周六周日event的数量≥2而已。日期表(简称t1) 关联 TODO清单表(简称t2),关联时t2表需要舍弃状态为“结束”的行【①号坑】。关联后条件筛选t1的weekday为周六或者周日,基于t1的week和weekday对t2的event进行计数,并筛选计数项≥2的行。

            query = '''
            SELECT t1.week_number,t1.week_day,count(DISTINCT t2.event)
            FROM calendar_table t1
            LEFT JOIN evil_table t2 on t2.date = t1.date
            WHERE t1.week_day in (6,7) and t2.desc != '结束'
            GROUP BY t1.week_number,t1.week_day
            HAVING count(distinct t2.event) >=2
            '''
            result = connection.execute(query).fetchall()
            result
            
            [(3, 6, 2),
             (3, 7, 2),
             (7, 6, 2),
             (7, 7, 2),
             (8, 6, 2),
             (8, 7, 2),
             (9, 6, 3),
             (9, 7, 3),
             (10, 6, 2),
             (10, 7, 2),
             (11, 6, 2),
             (11, 7, 2),
             (12, 6, 2),
             (12, 7, 2),
             (13, 6, 4),
             (13, 7, 3),
             (14, 6, 2),
             (14, 7, 2),
             (15, 6, 2),
             (15, 7, 3),
             (16, 6, 2),
             (16, 7, 3),
             (17, 6, 2),
             (17, 7, 2),
             (19, 6, 2),
             (19, 7, 2),
             (20, 6, 2),
             (20, 7, 2),
             (21, 6, 2),
             (21, 7, 3),
             (22, 6, 2),
             (22, 7, 2),
             (23, 6, 2),
             (23, 7, 2),
             (24, 7, 2),
             (28, 6, 2),
             (28, 7, 2),
             (29, 6, 3),
             (29, 7, 3),
             (30, 6, 3),
             (30, 7, 3),
             (31, 6, 3),
             (31, 7, 3),
             (34, 6, 2),
             (34, 7, 2),
             (35, 6, 3),
             (35, 7, 2),
             (36, 6, 4),
             (36, 7, 4),
             (37, 6, 5),
             (37, 7, 6),
             (38, 6, 4),
             (38, 7, 4),
             (39, 6, 3),
             (39, 7, 3),
             (41, 7, 2),
             (42, 6, 2),
             (42, 7, 2),
             (43, 6, 2),
             (47, 6, 2),
             (47, 7, 2),
             (48, 6, 2),
             (48, 7, 2),
             (49, 6, 3),
             (49, 7, 3),
             (50, 6, 3),
             (50, 7, 3),
             (51, 6, 3),
             (51, 7, 3),
             (52, 6, 2),
             (52, 7, 2),
             (53, 7, 2)]
            
            len(result)
            
            72
            
            # ...your code...
            a9 = '72'  # 在 '' 中填入你的结果,如 a9 = '5' 代表有 5 个周末要执行2个不同的事项(周六,周日分开计算,例如 2个周六 和 3个周日 = 5个周末)
            
            Q10: 在 2023 年当中,我的繁忙系数是多少?

            繁忙系数 = ∑ i = 1 繁忙天数 每日繁忙系数 繁忙系数 = \sum_{i=1}^{繁忙天数}每日繁忙系数 繁忙系数=i=1∑繁忙天数​每日繁忙系数

            结果只需要保留整数位,不需要四舍五入,例如:若答案为 221.229,则回答 221 即可

            忙碌的天数定义同 Q8

            每日繁忙系数 = (当日事项重要性的平均值* 0.5+未来 3 天内要开展的事项的重要性的平均值 * 0.3 + 未来 3 天内要结束的事项的重要性的平均值 * 0.2)

            思路:避开坑后,就有思路了。同Q8,分别列出满足3个条件的子表,然后用日历表为基准去关联,最后根据算法求出每天的繁忙系数然后累加即可。

            query = '''
            SELECT sum(index1*0.5+index2*0.3+index3*0.2) indexAll FROM(
            SELECT t.date, DATE(t.date,'+3 days'),IFNULL(t1.imp,0) index1,IFNULL(AVG(t3.importance),0) index2,IFNULL(AVG(t2.importance),0) index3
            FROM calendar_table AS t 
            LEFT JOIN (
              SELECT date,AVG(importance) imp FROM evil_table WHERE desc != '结束' GROUP BY date HAVING COUNT(event)>=2
            ) AS t1 on t1.date = t.date
            LEFT JOIN (
              SELECT date,importance FROM evil_table WHERE importance>1 AND desc = '结束'
            ) AS t2 on t2.date BETWEEN DATE(t.date,'+1 days') AND DATE(t.date,'+3 days')
            LEFT JOIN (
              SELECT date,importance FROM evil_table WHERE importance>2 AND desc = '开始'
            ) AS t3 on t3.date BETWEEN DATE(t.date,'+1 days') AND DATE(t.date,'+3 days')
            GROUP BY t.date
            order by t.date
            ) as a
            '''
            result = connection.execute(query).fetchall()
            result
            
            [(252.50833333333347,)]
            
            # ...your code...
            a10 = '252'  # 在 '' 中填入你的结果,如 a10 = '12' 代表忙碌系数为 12
            

转载请注明来自码农世界,本文标题:《SQL进阶(六):通关题:制作一个活动日历》

百度分享代码,如果开启HTTPS请参考李洋个人博客
每一天,每一秒,你所做的决定都会改变你的人生!

发表评论

快捷回复:

评论列表 (暂无评论,68人围观)参与讨论

还没有评论,来说两句吧...

Top