Problem: 106. 从中序与后序遍历序列构造二叉树
文章目录
- 题目描述
- 思路
- 复杂度
- Code
题目描述
思路
具体思路参考:
Problem: 力扣105. 从前序与中序遍历序列构造二叉树
再后序遍历中:每次取int rootVal = postorder[postEnd];构造根节点;左子树的范围是build(inorder, inStart, index - 1, postorder, postStart, postStart + leftSize - 1);右子树范围为build(inorder, index + 1, inEnd, postorder, postStart + leftSize, postEnd - 1)
复杂度
时间复杂度:
O ( n ) O(n) O(n);其中 n n n为树节点的个数
空间复杂度:
O ( h e i g h ) O(heigh) O(heigh);其中 h e i g h t height height为树的高度
Code
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { Map
valToIndex = new HashMap<>(); public TreeNode buildTree(int[] inorder, int[] postorder) { for (int i = 0; i < inorder.length; ++i) { valToIndex.put(inorder[i], i); } return build(inorder, 0, inorder.length - 1, postorder, 0, postorder.length - 1); } TreeNode build(int[] inorder, int inStart, int inEnd, int[] postorder, int postStart, int postEnd) { if (inStart > inEnd) { return null; } // The value of the root node is the last element of the post-order traversal group int rootVal = postorder[postEnd]; // rootVal traverses the index in the group in medium order int index = valToIndex.get(rootVal); // Number of nodes in the left subtree int leftSize = index - inStart; TreeNode root = new TreeNode(rootVal); root.left = build(inorder, inStart, index - 1, postorder, postStart, postStart + leftSize - 1); root.right = build(inorder, index + 1, inEnd, postorder, postStart + leftSize, postEnd - 1); return root; } }
还没有评论,来说两句吧...