我们将解释如何在Python中实现图像的镜像或翻转。大家只需要了解各种矩阵运算和矩阵操作背后的基本数学即可。
01. 依赖包要求
NumPy —用于矩阵运算并对其进行处理。
OpenCV —用于读取图像并将其转换为2D数组(矩阵)。
Matplotlib —用于将矩阵绘制为图像。
对于这个小型项目,我使用了著名的Lena图像,该图像主要用于测试计算机视觉模型。确保下载此映像并将其保存在当前工作目录中。
import cv2 import numpy as np from matplotlib import pyplot as plt
02. 让我们开始吧
首先,我们使用imread()模块中的方法读取图像文件cv2。为此,我们只需要导入包并使用它即可。因此,通过这样做,我们获得了矩阵形式的图像。默认情况下,imread()该方法读取的图像BGR(Blue,Green,Red)格式。要读取的图像转换为常规格式,即,RGB(Red,Green,Blue),我们使用cvtColor()来自同一模块的方法cv2。
def read_this(image_file, gray_scale=False): image_src = cv2.imread(image_file) if gray_scale: image_rgb = cv2.cvtColor(image_src, cv2.COLOR_BGR2GRAY) else: image_rgb = cv2.cvtColor(image_src, cv2.COLOR_BGR2RGB) return image_rgb
上面的函数从传递的图像文件返回图像矩阵。如果我们要获取图像矩阵或格式,它由常规if和else条件组成。
镜像图像
要基本镜像图像,我们需要从左到右逐行反转矩阵。让我们考虑一个matrix A。
>>> A = [ [4, 1, 1], [2, 8, 0], [3, 8, 1] ]
如果我们要镜像此矩阵(逐行),则它将是-
>>> import numpy as np >>> mirror_ = np.fliplr(A) >>> mirror_ [[1, 1, 4], [0, 8, 2], [1, 8, 3]]
我们也可以在不使用NumPy模块的情况下执行此操作。如果是这样,我们可以使用循环并反转每一行。如果在图像矩阵上执行相同的操作将花费一些时间,因为它们是非常大的矩阵,并且我们不希望我们的代码执行得非常慢。
def mirror_this(image_file, gray_scale=False, with_plot=False): image_rgb = read_this(image_file=image_file, gray_scale=gray_scale) image_mirror = np.fliplr(image_rgb) if with_plot: fig = plt.figure(figsize=(10, 20)) ax1 = fig.add_subplot(2, 2, 1) ax1.axis("off") ax1.title.set_text('Original') ax2 = fig.add_subplot(2, 2, 2) ax2.axis("off") ax2.title.set_text("Mirrored") if not gray_scale: ax1.imshow(image_rgb) ax2.imshow(image_mirror) else: ax1.imshow(image_rgb, cmap='gray') ax2.imshow(image_mirror, cmap='gray') return True return image_mirror
上面的函数返回一个图像矩阵,该矩阵从左向右逐行反转或翻转。
让我们绘制相同的内容-
mirror_this(image_file="lena_original.png", with_plot=True)
mirror_this(image_file="lena_original.png", gray_scale=True, with_plot=True)
翻转图像
要基本翻转图像,我们需要将矩阵从上到下逐列反转。让我们考虑一个matrix B。
>>> B = [ [4, 1, 1], [2, 8, 0], [3, 8, 1] ]
如果我们要翻转此矩阵(按列),则它将是-
>>> import numpy as np >>> flip_= np.flipud(B) >>> flip_ [[3, 8, 1], [2, 8, 0], [4, 1, 1]]
我们NumPy用于翻转矩阵以保持代码的牢固性。
def flip_this(image_file, gray_scale=False, with_plot=False): image_rgb = read_this(image_file=image_file, gray_scale=gray_scale) image_flip = np.flipud(image_rgb) if with_plot: fig = plt.figure(figsize=(10, 20)) ax1 = fig.add_subplot(2, 2, 1) ax1.axis("off") ax1.title.set_text('Original') ax2 = fig.add_subplot(2, 2, 2) ax2.axis("off") ax2.title.set_text("Flipped") if not gray_scale: ax1.imshow(image_rgb) ax2.imshow(image_flip) else: ax1.imshow(image_rgb, cmap='gray') ax2.imshow(image_flip, cmap='gray') return True return image_flip
上面的函数返回一个图像矩阵,该矩阵从上向下向下按列反转或翻转。
让我们绘制相同的内容-
flip_this(image_file='lena_original.png', with_plot=True)
flip_this(image_file='lena_original.png', gray_scale=True, with_plot=True)
完整的代码
class ImageOpsFromScratch(object): def __init__(self, image_file): self.image_file = image_file def read_this(self, gray_scale=False): image_src = cv2.imread(self.image_file) if gray_scale: image_rgb = cv2.cvtColor(image_src, cv2.COLOR_BGR2GRAY) else: image_rgb = cv2.cvtColor(image_src, cv2.COLOR_BGR2RGB) return image_rgb def mirror_this(self, with_plot=True, gray_scale=False): image_rgb = self.read_this(gray_scale=gray_scale) image_mirror = np.fliplr(image_rgb) if with_plot: self.plot_it(orig_matrix=image_rgb, trans_matrix=image_mirror, head_text='Mirrored', gray_scale=gray_scale) return None return image_mirror def flip_this(self, with_plot=True, gray_scale=False): image_rgb = self.read_this(gray_scale=gray_scale) image_flip = np.flipud(image_rgb) if with_plot: self.plot_it(orig_matrix=image_rgb, trans_matrix=image_flip, head_text='Flipped', gray_scale=gray_scale) return None return image_flip def plot_it(self, orig_matrix, trans_matrix, head_text, gray_scale=False): fig = plt.figure(figsize=(10, 20)) ax1 = fig.add_subplot(2, 2, 1) ax1.axis("off") ax1.title.set_text('Original') ax2 = fig.add_subplot(2, 2, 2) ax2.axis("off") ax2.title.set_text(head_text) if not gray_scale: ax1.imshow(orig_matrix) ax2.imshow(trans_matrix) else: ax1.imshow(orig_matrix, cmap='gray') ax2.imshow(trans_matrix, cmap='gray') return True RUBY 复制 全屏
基本图像操作包
imo = ImageOpsFromScratch(image_file='lena_original.png') ### Mirroring ### imo.mirror_this() imo.mirror_this(gray_scale=True) ### Flipping ### imo.flip_this() imo.flip_this(gray_scale=True)
将显示以上图像结果。现在,所有内容都已排序,我们可以创建其他图像操作,例如equalize(),solarize()等等。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓
还没有评论,来说两句吧...