【数据库】【《数据库系统概论(第5版)》笔记】第二章:关系数据库

【数据库】【《数据库系统概论(第5版)》笔记】第二章:关系数据库

码农世界 2024-05-27 前端 76 次浏览 0个评论

文章目录

    • @[toc]
      • 2.1|关系数据结构及形式化定义
        • 关系
        • 关系类型
          • 基本关系的性质
          • 关系模式
          • 关系模型的存储结构
          • 2.2|关系操作
            • 查询
            • 关系语言的分类
            • 2.3|关系的完整性
              • 实体完整性
              • 参照完整性
              • 用户定义的完整性
              • 2.4|关系代数
                • 传统的集合运算
                  • 笛卡尔积
                  • 专门的关系运算
                    • 选择
                    • 投影
                    • 连接
                      • 等值连接
                      • 自然连接
                      • 除运算
                        • 示例

                          2.1|关系数据结构及形式化定义

                          关系
                          • 关系是笛卡尔积的有限子集,是一张二维表
                            • 若关系中的某一属性组的值能唯一地标识一个元组,而其子集不能,则称该属性组为候选码
                            • 若一个关系有多个候选码,则选定其中一个为主码
                            • 候选码的诸属性称为主属性,不包含在任何候选码中的属性称为非主属性或非码属性
                            • 在最极端的情况下,关系模式的所有属性是这个关系模式的候选码,称为全码
                              关系类型
                              • 基本关系(基本表或基表):实际存在的表
                              • 查询表:查询结果对应的表
                              • 视图表:由基本表或其他视图导出的表,是虚表,不对应实际存储的数据
                                基本关系的性质
                                • 列是同质的,即每一列中的分量是同一类型的数据,来自同一个域
                                • 不同的列可出自同一个域,称其中的每一列为一个属性,不同的属性要给予不同的属性名
                                • 列的顺序无所谓,即列的次序可以任意交换
                                • 任意两个元组的候选码不能取相同的值
                                • 行的顺序无所谓,即行的次序可以任意交换
                                • 分量必须取原子值,即每一个分量都必须是不可分的数据项
                                  关系模式
                                  • 关系的描述称为关系模式,可以形式化地表示为 R ( U , D , D O M , F ) R(U , D , DOM , F) R(U,D,DOM,F),其中 R R R为关系名, U U U为组成该关系的属性名集合, D D D为 U U U中属性所来自的域, D O M DOM DOM为属性向域的映像集合, F F F为属性间数据的依赖关系集合

                                  • 关系是关系模式在某一时刻的状态或内容

                                    关系模型的存储结构
                                    • 在关系数据库的物理组织中,有的关系数据库管理系统中一个表对应一个操作系统文件,将物理数据组织交给操作系统完成,有的关系数据库管理系统从操作系统那里申请若干个大的文件,自己划分文件空间,组织表、索引等存储结构,并进行存储管理

                                      2.2|关系操作

                                      • 关系操作的特点是集合操作方式,即操作的对象和结果都是集合,这种操作方式也称为一次一集合的方式,非关系数据模型的数据操作方式则为一次一记录的方式
                                        查询
                                        • 查询操作可以分为选择、投影、连接、除、并、差、交、笛卡尔积,其中选择、投影、并、差、笛卡尔积是 5 5 5种基本操作
                                          关系语言的分类
                                          • 关系代数语言
                                          • 关系演算语言
                                            • 元组关系演算语言
                                            • 域关系演算语言
                                            • 具有关系代数和关系演算双重特点的结构化查询语言 S Q L SQL SQL

                                              2.3|关系的完整性

                                              实体完整性
                                              • 若属性(指一个或一组属性) A A A是基本关系 R R R的主属性,则 A A A不能取空值
                                                参照完整性
                                                • 设 F F F是基本关系 R R R的一个或一组属性,但不是关系 R R R的码, K s K_{s} Ks​是基本关系 S S S的主码,如果 F F F与 K s K_{s} Ks​相对应,则称 F F F是 R R R的外码,并称基本关系 R R R为参照关系,基本关系 S S S为被参照关系或目标关系,关系 R R R和 S S S不一定是不同的关系
                                                • 若属性(或属性组) F F F是基本关系 R R R的外码,它与基本关系 S S S的主码 K s K_{s} Ks​相对应(基本关系 R R R和 S S S不一定是不同的关系),则对于 R R R中每个元组在 F F F上的值必须
                                                  • 或者取空值( F F F的每个属性值均为空值)
                                                  • 或者等于 S S S中某个元组的主码值
                                                    用户定义的完整性

                                                    2.4|关系代数

                                                    传统的集合运算
                                                    • 传统的集合运算是二目运算,包括并、差、交、笛卡尔积 4 4 4种运算
                                                    • 设关系 R R R和关系 S S S具有相同的目 n n n,且相应的属性取自同一个域, t t t是元组变量, t ∈ R t \in R t∈R表示 t t t是 R R R的一个元组,可以定义并、差、交、笛卡尔积运算如下

                                                      R ∪ S = {   t ∣ t ∈ R ∨ t ∈ S   } R \cup S = \set{t \mid t \in R \vee t \in S} R∪S={t∣t∈R∨t∈S}

                                                      R − S = {   t ∣ t ∈ R ∧ t ∉ S   } R - S = \set{t \mid t \in R \wedge t \notin S} R−S={t∣t∈R∧t∈/S}

                                                      R ∩ S = {   t ∣ t ∈ R ∧ t ∈ S   } R \cap S = \set{t \mid t \in R \wedge t \in S} R∩S={t∣t∈R∧t∈S}

                                                      笛卡尔积
                                                      • 两个分别为 n n n目和 m m m目的关系 R R R和 S S S的笛卡尔积是一个 n + m n + m n+m列的元组的集合,元组的前 n n n列是关系 R R R的一个元组,后 m m m列是关系 S S S的一个元组,记作

                                                        R × S = {   t r t s ^ ∣ t r ∈ R ∧ t s ∈ S   } R \times S = \set{\widehat{t_{r} t_{s}} \mid t_{r} \in R \wedge t_{s} \in S} R×S={tr​ts​ ​∣tr​∈R∧ts​∈S}

                                                        专门的关系运算
                                                        • 专门的关系运算包括选择、投影、连接、除运算
                                                        • 设关系模式为 R ( A 1 , A 2 , ⋯   , A n ) R(A_{1} , A_{2} , \cdots , A_{n}) R(A1​,A2​,⋯,An​),它的一个关系设为 R R R, t ∈ R t \in R t∈R表示 t t t是 R R R的一个元组, t [ A i ] t[A_{i}] t[Ai​]则表示元组 t t t中相应于属性 A i A_{i} Ai​的一个分量,若 A = {   A i 1 , A i 2 , ⋯   , A i k   } A = \set{A_{i1} , A_{i2} , \cdots , A_{ik}} A={Ai1​,Ai2​,⋯,Aik​},其中 A i 1 A_{i1} Ai1​, A i 2 A_{i2} Ai2​, ⋯ \cdots ⋯, A i k A_{ik} Aik​是 A 1 A_{1} A1​, A 2 A_{2} A2​, ⋯ \cdots ⋯, A n A_{n} An​中的一部分,则 A A A称为属性列或属性组, t [ A ] = ( t [ A i 1 ] , t [ A i 2 ] , ⋯   , t [ A i k ] ) t[A] = (t[A_{i1}] , t[A_{i2}] , \cdots , t[A_{ik}]) t[A]=(t[Ai1​],t[Ai2​],⋯,t[Aik​])表示元组 t t t在属性列 A A A上诸分量的集合, A ˉ \bar{A} Aˉ则表示 {   A 1 , A 2 , ⋯   , A n   } \set{A_{1} , A_{2} , \cdots , A_{n}} {A1​,A2​,⋯,An​}中去掉 {   A i 1 , A i 2 , ⋯ A i k   } \set{A_{i1} , A_{i2} , \cdots A_{ik}} {Ai1​,Ai2​,⋯Aik​}后剩余的属性组
                                                        • R R R为 n n n目关系, S S S为 m m m目关系, t r ∈ R t_{r} \in R tr​∈R, t s ∈ S t_{s} \in S ts​∈S, t r t s ^ \widehat{t_{r} t_{s}} tr​ts​ ​称为元组的连接或元组的串接
                                                        • 给定一个关系 R ( X , Z ) R(X , Z) R(X,Z), X X X和 Z Z Z为属性组,当 t [ X ] = x t[X] = x t[X]=x时, x x x在 R R R中的象集定义为 Z x = {   t [ Z ] ∣ t ∈ R , t [ X ] = x   } Z_{x} = \set{t[Z] \mid t \in R , t[X] = x} Zx​={t[Z]∣t∈R,t[X]=x},它表示 R R R中属性组 X X X上值为 x x x的诸元组在 Z Z Z上分量的集合
                                                          选择
                                                          • 选择又称为限制,在关系 R R R中选择满足给定条件的诸元组,记作

                                                            σ F ( R ) = {   t ∣ t ∈ R ∧ F ( t ) = 真   } \sigma_{F}(R) = \set{t \mid t \in R \wedge F(t) = 真} σF​(R)={t∣t∈R∧F(t)=真}

                                                            • 其中 F F F表示选择条件,是一个逻辑表达式
                                                              投影
                                                              • 关系 R R R上的投影是从 R R R中选择出若干属性列组成新的关系,记作

                                                                Π A R = {   t [ A ] ∣ t ∈ R   } \Pi_{A}{R} = \set{t[A] \mid t \in R} ΠA​R={t[A]∣t∈R}

                                                                • 其中 A A A为 R R R中的属性列
                                                                  连接
                                                                  • 连接也称为 θ \theta θ连接,从两个关系的笛卡尔积中选取属性间满足一定条件的元组,记作

                                                                    R ⋈ A θ B S = {   t r t s ^ ∣ t r ∈ R ∧ t s ∈ S ∧ t r [ A ] θ t s [ B ]   } R \substack{\Join \\ A \theta B} S = \set{\widehat{t_{r} t_{s}} \mid t_{r} \in R \wedge t_{s} \in S \wedge t_{r}[A] \theta t_{s}[B]} R⋈AθB​S={tr​ts​ ​∣tr​∈R∧ts​∈S∧tr​[A]θts​[B]}

                                                                    • 其中, A A A和 B B B分别为 R R R和 S S S上列数相等且可比的属性组, θ \theta θ是比较运算符
                                                                      等值连接
                                                                      • θ \theta θ为“ = = =”的连接运算称为等值连接
                                                                        自然连接
                                                                        • 自然连接是一种特殊的等值连接,要求两个关系中进行比较的分量必须是同名的属性组,并且在结果中把重复的属性列去掉,即若 R R R和 S S S中具有相同的属性组 B B B, U U U为 R R R和 S S S的全体属性集合,则自然连接可记作

                                                                          R ⋈ S = {   t r t s ^ [ U − B ] ∣ t r ∈ R ∧ t s ∈ S ∧ t r [ B ] = t s [ B ]   } R \Join S = \set{\widehat{t_{r} t_{s}}[U - B] \mid t_{r} \in R \wedge t_{s} \in S \wedge t_{r}[B] = t_{s}[B]} R⋈S={tr​ts​ ​[U−B]∣tr​∈R∧ts​∈S∧tr​[B]=ts​[B]}

                                                                          • 在做自然连接时,被舍弃的元组称为悬浮元组,如果把悬浮元组也保存在结果中,而在其他属性上填空值,那么这种连接就叫做外连接,如果只保留左边关系 R R R中的悬浮元组就叫做左外连接,如果只保留右边关系 S S S中的悬浮元组就叫做右外连接
                                                                            除运算
                                                                            • 设关系 R R R除以关系 S S S的结果为关系 T T T,则 T T T包含所有在 R R R但不在 S S S中的属性及其值,且 T T T的元组与 S S S的元组的所有组合都在 R R R中
                                                                            • 给定关系 R ( X , Y ) R(X , Y) R(X,Y)和 S ( Y , Z ) S(Y , Z) S(Y,Z),其中 X X X、 Y Y Y、 Z Z Z为属性组, R R R中 Y Y Y与 S S S中的 Y Y Y可以有不同的属性名,但必须出自相同的域集, R R R与 S S S的除运算得到一个新的关系 P ( X ) P(X) P(X), P P P是 R R R中满足下列条件的元组在 X X X属性列上的投影:元组在 X X X上分量值 x x x的象集 Y x Y_{x} Yx​包含 S S S在 Y Y Y上投影的集合,记作

                                                                              R ÷ S = {   t r [ X ] ∣ t r ∈ R ∧ Π Y ( S ) ⊆ Y x   } R \div S = \set{t_{r}[X] \mid t_{r} \in R \wedge \Pi_{Y}(S) \subseteq Y_{x}} R÷S={tr​[X]∣tr​∈R∧ΠY​(S)⊆Yx​}

                                                                              • 其中 Y x Y_{x} Yx​为 x x x在 R R R中的象集, x = t r [ X ] x = t_{r}[X] x=tr​[X]
                                                                                示例
                                                                                • 以学生 − - −课程数据库为例,查询至少选修 1 1 1号课程和 3 3 3号课程的学生号码
                                                                                  • 首先建立一个临时关系 K K K
                                                                                      • 然后求 Π S n o , C n o ( S C ) ÷ K \Pi_{Sno , Cno}(SC) \div K ΠSno,Cno​(SC)÷K

转载请注明来自码农世界,本文标题:《【数据库】【《数据库系统概论(第5版)》笔记】第二章:关系数据库》

百度分享代码,如果开启HTTPS请参考李洋个人博客
每一天,每一秒,你所做的决定都会改变你的人生!

发表评论

快捷回复:

评论列表 (暂无评论,76人围观)参与讨论

还没有评论,来说两句吧...

Top