Pytorch深度学习实践笔记11(b站刘二大人)

Pytorch深度学习实践笔记11(b站刘二大人)

码农世界 2024-05-28 后端 90 次浏览 0个评论

🎬个人简介:一个全栈工程师的升级之路!

📋个人专栏:pytorch深度学习

🎀CSDN主页 发狂的小花

🌄人生秘诀:学习的本质就是极致重复!

《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili​

目录

1 1x1 卷积

2 卷积实现

3 代码


1 1x1 卷积

(1)用来对通道数进行降维或升维,保持Feature Map长宽不变,减少计算量

(2)实现跨通道信息的融合

(3)可以保持输入和输出网络结构不变的同时,融合特征

 

1x1卷积(Conv 1*1)的作用​

2 卷积实现

多层网络组成

Pytorch深度学习实践笔记11(b站刘二大人)



concat算子连接:

Pytorch深度学习实践笔记11(b站刘二大人)


 

Pytorch深度学习实践笔记11(b站刘二大人)



3 代码

 

import torch
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
 
# prepare dataset
 
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差
 
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
 
# design model using class
class InceptionA(nn.Module):
    def __init__(self, in_channels):
        super(InceptionA, self).__init__()
        self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
 
        self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
 
        self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
 
        self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
 
    def forward(self, x):
        branch1x1 = self.branch1x1(x)
 
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)
 
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)
 
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
 
        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        return torch.cat(outputs, dim=1) # b,c,w,h  c对应的是dim=1
 
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(88, 20, kernel_size=5) # 88 = 24x3 + 16
 
        self.incep1 = InceptionA(in_channels=10) # 与conv1 中的10对应
        self.incep2 = InceptionA(in_channels=20) # 与conv2 中的20对应
 
        self.mp = nn.MaxPool2d(2)
        self.fc = nn.Linear(1408, 10) 
 
 
    def forward(self, x):
        in_size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))
        x = self.incep1(x)
        x = F.relu(self.mp(self.conv2(x)))
        x = self.incep2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
 
        return x
 
model = Net()
 
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
 
# training cycle forward, backward, update
 
 
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
 
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
 
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
            running_loss = 0.0
 
 
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100*correct/total))
 
 
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()


引入残差解决梯度消失,上一节已经讲过,构建更深的网络

Pytorch深度学习实践笔记11(b站刘二大人)

Pytorch深度学习实践笔记11(b站刘二大人)



代码:

import torch
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
 
# prepare dataset
 
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差
 
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
 
# design model using class
class ResidualBlock(nn.Module):
    def __init__(self, channels):
        super(ResidualBlock, self).__init__()
        self.channels = channels
        self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
 
    def forward(self, x):
        y = F.relu(self.conv1(x))
        y = self.conv2(y)
        return F.relu(x + y)
 
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 16, kernel_size=5)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=5) # 88 = 24x3 + 16
 
        self.rblock1 = ResidualBlock(16)
        self.rblock2 = ResidualBlock(32)
 
        self.mp = nn.MaxPool2d(2)
        self.fc = nn.Linear(512, 10) # 暂时不知道1408咋能自动出来的
 
 
    def forward(self, x):
        in_size = x.size(0)
 
        x = self.mp(F.relu(self.conv1(x)))
        x = self.rblock1(x)
        x = self.mp(F.relu(self.conv2(x)))
        x = self.rblock2(x)
 
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x
 
model = Net()
 
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
 
# training cycle forward, backward, update
 
 
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
 
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
 
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
            running_loss = 0.0
 
 
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100*correct/total))
 
 
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

🌈我的分享也就到此结束啦🌈

如果我的分享也能对你有帮助,那就太好了!

若有不足,还请大家多多指正,我们一起学习交流!

📢未来的富豪们:点赞👍→收藏⭐→关注🔍,如果能评论下就太惊喜了!

感谢大家的观看和支持!最后,☺祝愿大家每天有钱赚!!!欢迎关注、关注!

转载请注明来自码农世界,本文标题:《Pytorch深度学习实践笔记11(b站刘二大人)》

百度分享代码,如果开启HTTPS请参考李洋个人博客
每一天,每一秒,你所做的决定都会改变你的人生!

发表评论

快捷回复:

评论列表 (暂无评论,90人围观)参与讨论

还没有评论,来说两句吧...

Top