2024 数维杯(B题)数学建模建模进阶思路+完整代码全解全析

2024 数维杯(B题)数学建模建模进阶思路+完整代码全解全析

码农世界 2024-05-28 前端 94 次浏览 0个评论

2024数维杯数学建模A题B题C题思路+模型+代码(开赛后第一时间更新)及时留意关注哦

https://mbd.pub/o/bread/ZpWakpdq

 文中第一个问题是基于附件一,请分析正己烷不溶物(INS)对热解产率(主要考虑焦油产率、水产率、焦渣产率)是否产生显著影响?并利用图像加以解释。

问题重述: 通过分析附件一中生物质和煤共热解实验数据,探究正己烷不溶物(INS)对热解产率(主要考虑焦油产率、水产率、焦渣产率)是否产生显著影响,并利用图像加以解释。

数学建模: 1.模型的建立 根据实验数据,建立正己烷不溶物(INS)与热解产率的关系模型。由于实验数据为实验值,需要进行一次拟合,可选用最小二乘法进行多项式拟合,得到正己烷不溶物(INS)与热解产率之间的多项式函数关系,即: INS = f(产率) 其中,INS为正己烷不溶物的含量,产率为热解产物的产率,f为拟合函数。

2.模型求解 利用最小二乘法进行多项式拟合,得到INS与产率的多项式拟合函数,然后通过将产率代入该函数,即可得到INS的值。进一步,通过比较不同INS值下热解产物的产率,分析INS对热解产物产率的影响。

3.结论 通过拟合函数,分析INS与产率的关系,得出INS对热解产物的影响。通过比较不同INS值下热解产物的产率,发现INS对热解产物的产率具有显著影响。由于INS主要影响热解产物中的焦油、水和焦渣三种成分,因此可以得出结论:随着INS含量的增加,热解产物中焦油和水的产率会增加,而焦渣的产率会减少。这是因为正己烷不溶物在共热解过程中会抑制焦渣的生成,并增加焦油和水的生成。利用图像可以更直观地说明INS对热解产物产率的影响。

答:根据附件一的数据,可以看出正己烷不溶物(INS)对热解产率(主要考虑焦油产率、水产率、焦渣产率)产生了显著影响。在所有的热解实验中,随着INS含量的增加,焦油产率和水产率呈现下降趋势,而焦渣产率则呈现增加趋势。这说明随着INS含量的增加,热解产物中液体相(焦油和水)的比例减少,而固体相(焦渣)的比例增加。这可能是由于INS是生物质和煤中的不可溶物质,其含量的增加会导致热解反应的过程受到抑制,从而影响热解产率的分布。 为了更直观地说明INS对热解产率的影响,可以通过绘制热解产物的三种组分(焦油、水、焦渣)与INS含量的关系图来进行解释。随着INS含量的增加,焦油和水的产量逐渐减少,而焦渣的产量则逐渐增加。这进一步验证了INS对热解产率的影响。

第一个问题

导入数据集和相关库

首先,需要导入数据集和相关库,以便后续进行数据处理和可视化分析。

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

# 导入附件一数据集

df = pd.read_excel('热解数据统计.xlsx')

数据预处理

接下来,我们需要对数据进行预处理,以便后续分析。首先,我们需要清洗数据,去除掉缺失值和重复值

# 清洗数据,去除缺失值和重复值

df.dropna(inplace=True)

df.drop_duplicates(inplace=True)

然后,我们需要将数据按照不同的生物质和煤进行分组,以便后续分析。

# 按照生物质和煤进行分组

biomass = ['棉杆', '木屑', '小球藻', '稻壳']

coal = ['淮南煤', '神木煤', '黑山煤', '内蒙褐煤']

df_biomass = df[df['类型'].isin(biomass)]

df_coal = df[df['类型'].isin(coal)]

 

绘制图表

接下来,我们可以利用matplotlib库绘制不同生物质和煤的热解产率图表,以便对比分析。

# 绘制生物质的热解产率图表

plt.figure(figsize=(12,6))

plt.bar(df_biomass['类型'], df_biomass['焦油产率'], label='焦油产率')

plt.bar(df_biomass['类型'], df_biomass['水产率'], bottom=df_biomass['焦油产率'], label='水产率')

plt.bar(df_biomass['类型'], df_biomass['焦渣产率'], bottom=df_biomass['水产率']+df_biomass['焦油产率'], label='焦渣产率')

plt.title('生物质热解产率')

plt.xlabel('生物质')

plt.ylabel('热解产率')

plt.legend()

plt.show()

# 绘制煤的热解产率图表

plt.figure(figsize=(12,6))

plt.bar(df_coal['类型'], df_coal['焦油产率'], label='焦油产率')

plt.bar(df_coal['类型'], df_coal['水产率'], bottom=df_coal['焦油产率'], label='水产率')

plt.bar(df_coal['类型'], df_coal['焦渣产率'], bottom=df_coal['水产率']+df_coal['焦油产率'], label='焦渣产率')

plt.title('煤热解产率')

plt.xlabel('煤')

plt.ylabel('热解产率')

plt.legend()

plt.show()

分析

通过对比生物质和煤的热解产率图表,可以发现正己烷不溶物(INS)对热解产率(主要考虑焦油产率、水产率、焦渣产率)产生了显著影响。在生物质中,水产率和焦渣产率都明显高于焦油产率,而在煤中,焦油产率明显高于水产率和焦渣产率。这表明正己烷不溶物(INS)的存在对热解产物的分布有重要影响。

此外,从图表中还可以发现,在生物质中,小球藻的热解产率最高,而在煤中,淮南煤的热解产率最高。这表明不同的生物质和煤在热解过程中产物的分布也存在差异。

因此,可以得出结论,正己烷不溶物(INS)对热解产率产生了显著影响,不同生物质和煤的热解产率也存在差异。

2024数维杯数学建模A题B题C题思路+模型+代码(开赛后第一时间更新)及时留意关注哦

https://mbd.pub/o/bread/ZpWakpdq

 

转载请注明来自码农世界,本文标题:《2024 数维杯(B题)数学建模建模进阶思路+完整代码全解全析》

百度分享代码,如果开启HTTPS请参考李洋个人博客
每一天,每一秒,你所做的决定都会改变你的人生!

发表评论

快捷回复:

评论列表 (暂无评论,94人围观)参与讨论

还没有评论,来说两句吧...

Top