YOLOv5+单目测距(python)

YOLOv5+单目测距(python)

码农世界 2024-05-31 后端 83 次浏览 0个评论

YOLOv5+单目测距(python)

  • 1. 相关配置
  • 2. 测距原理
  • 3. 相机标定
    • 3.1:标定方法1
    • 3.2:标定方法2
    • 4. 相机测距
      • 4.1 测距添加
      • 4.2 细节修改(可忽略)
      • 4.3 主代码
      • 5. 实验效果

        相关链接

        1. YOLOV7 + 单目测距(python)

        2. YOLOV5 + 单目跟踪(python)

        3. YOLOV7 + 单目跟踪(python)

        4. YOLOV5 + 双目测距(python)

        5. YOLOV7 + 双目测距(python)

        6. 具体实现效果已在Bilibili发布,点击跳转

        本篇博文工程源码下载

        链接1:https://download.csdn.net/download/qq_45077760/87708260

        链接2:https://github.com/up-up-up-up/yolov5_Monocular_ranging

        更多有关单目(尺寸测量,跟踪、碰撞检测等)的文章请见:https://blog.csdn.net/qq_45077760/category_12312107.html

        1. 相关配置

        系统:win 10

        YOLO版本:yolov5 6.1

        拍摄视频设备:安卓手机

        电脑显卡:NVIDIA 2080Ti(CPU也可以跑,GPU只是起到加速推理效果)

        2. 测距原理

        单目测距原理相较于双目十分简单,无需进行立体匹配,仅需利用下边公式线性转换即可:

                                                D = (F*W)/P
        

        其中D是目标到摄像机的距离, F是摄像机焦距(焦距需要自己进行标定获取), W是目标的宽度或者高度(行人检测一般以人的身高为基准), P是指目标在图像中所占据的像素

        YOLOv5+单目测距(python)

        了解基本原理后,下边就进行实操阶段

        3. 相机标定

        3.1:标定方法1

        可以参考张友正标定法获取相机的焦距

        3.2:标定方法2

        直接使用代码获得焦距,需要提前拍摄一个矩形物体,拍摄时候相机固定,距离被拍摄物体自行设定,并一直保持此距离,背景为纯色,不要出现杂物;最后将拍摄的视频用以下代码检测:

        import cv2
        win_width = 1920
        win_height = 1080
        mid_width = int(win_width / 2)
        mid_height = int(win_height / 2)
        foc = 1990.0       # 根据教程调试相机焦距
        real_wid = 9.05   # A4纸横着的时候的宽度,视频拍摄A4纸要横拍,镜头横,A4纸也横
        font = cv2.FONT_HERSHEY_SIMPLEX
        w_ok = 1
        capture = cv2.VideoCapture('5.mp4')
        capture.set(3, win_width)
        capture.set(4, win_height)
        while (True):
            ret, frame = capture.read()
            # frame = cv2.flip(frame, 1)
            if ret == False:
                break
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            gray = cv2.GaussianBlur(gray, (5, 5), 0)
            ret, binary = cv2.threshold(gray, 140, 200, 60)    # 扫描不到纸张轮廓时,要更改阈值,直到方框紧密框住纸张
            kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
            binary = cv2.dilate(binary, kernel, iterations=2)
            contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            # cv2.drawContours(frame, contours, -1, (0, 255, 0), 2)    # 查看所检测到的轮框
            for c in contours:
                if cv2.contourArea(c) < 1000:  # 对于矩形区域,只显示大于给定阈值的轮廓,所以一些微小的变化不会显示。对于光照不变和噪声低的摄像头可不设定轮廓最小尺寸的阈值
                    continue
                x, y, w, h = cv2.boundingRect(c)  # 该函数计算矩形的边界框
                if x > mid_width or y > mid_height:
                    continue
                if (x + w) < mid_width or (y + h) < mid_height:
                    continue
                if h > w:
                    continue
                if x == 0 or y == 0:
                    continue
                if x == win_width or y == win_height:
                    continue
                w_ok = w
                cv2.rectangle(frame, (x + 1, y + 1), (x + w_ok - 1, y + h - 1), (0, 255, 0), 2)
            dis_inch = (real_wid * foc) / (w_ok - 2)
            dis_cm = dis_inch * 2.54
            # os.system("cls")
            # print("Distance : ", dis_cm, "cm")
            frame = cv2.putText(frame, "%.2fcm" % (dis_cm), (5, 25), font, 0.8, (0, 255, 0), 2)
            frame = cv2.putText(frame, "+", (mid_width, mid_height), font, 1.0, (0, 255, 0), 2)
            cv2.namedWindow('res', 0)
            cv2.namedWindow('gray', 0)
            cv2.resizeWindow('res', win_width, win_height)
            cv2.resizeWindow('gray', win_width, win_height)
            cv2.imshow('res', frame)
            cv2.imshow('gray', binary)
            c = cv2.waitKey(40)
            if c == 27:    # 按退出键esc关闭窗口
                break
        cv2.destroyAllWindows()
        

        反复调节 ret, binary = cv2.threshold(gray, 140, 200, 60)这一行里边的三个参数,直到线条紧紧包裹住你所拍摄视频的物体,然后调整相机焦距直到左上角距离和你拍摄视频时相机到物体的距离接近为止

        YOLOv5+单目测距(python)

        然后将相机焦距写进测距代码distance.py文件里,这里行人用高度表示,根据公式 D = (F*W)/P,知道相机焦距F、行人的高度66.9(单位英寸→170cm/2.54)、像素点距离 h,即可求出相机到物体距离D。 这里用到h-2是因为框的上下边界像素点不接触物体

        foc = 1990.0        # 镜头焦距
        real_hight_person = 66.9   # 行人高度
        real_hight_car = 57.08      # 轿车高度
        # 自定义函数,单目测距
        def person_distance(h):
            dis_inch = (real_hight_person * foc) / (h - 2)
            dis_cm = dis_inch * 2.54
            dis_cm = int(dis_cm)
            dis_m = dis_cm/100
            return dis_m
        def car_distance(h):
            dis_inch = (real_hight_car * foc) / (h - 2)
            dis_cm = dis_inch * 2.54
            dis_cm = int(dis_cm)
            dis_m = dis_cm/100
            return dis_m
        

        4. 相机测距

        4.1 测距添加

        主要是把测距部分加在了画框附近,首先提取边框的像素点坐标,然后计算边框像素点高度,在根据 公式 D = (F*W)/P 计算目标距离

         for *xyxy, conf, cls in reversed(det):
             if save_txt:  # Write to file
                 xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                 line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                 with open(txt_path + '.txt', 'a') as f:
                     f.write(('%g ' * len(line)).rstrip() % line + '\n')
             if save_img or save_crop or view_img:  # Add bbox to image
                 x1 = int(xyxy[0])   #获取四个边框坐标
                 y1 = int(xyxy[1])
                 x2 = int(xyxy[2])
                 y2 = int(xyxy[3])
                 h = y2-y1
                 if names[int(cls)] == "person":
                     c = int(cls)  # integer class  整数类 1111111111
                     label = None if hide_labels else (
                         names[c] if hide_conf else f'{names[c]} {conf:.2f}')  # 111
                     dis_m = person_distance(h)   # 调用函数,计算行人实际高度
                     label += f'  {dis_m}m'       # 将行人距离显示写在标签后
                     txt = '{0}'.format(label)
                     annotator.box_label(xyxy, txt, color=colors(c, True))
                 if names[int(cls)] == "car":
                     c = int(cls)  # integer class  整数类 1111111111
                     label = None if hide_labels else (
                         names[c] if hide_conf else f'{names[c]} {conf:.2f}')  # 111
                     dis_m = car_distance(h)      # 调用函数,计算汽车实际高度
                     label += f'  {dis_m}m'       # 将汽车距离显示写在标签后
                     txt = '{0}'.format(label)
                     annotator.box_label(xyxy, txt, color=colors(c, True))
                 if save_crop:
                     save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
        

        4.2 细节修改(可忽略)

        到上述步骤就已经实现了单目测距过程,下边是一些小细节修改,可以不看

        为了实时显示画面,对运行的py文件点击编辑配置,在形参那里输入–view-img --save-txt

        YOLOv5+单目测距(python)

        但实时显示画面太大,我们对显示部分做了修改,这部分也可以不要,具体是把代码

        if view_img:
              cv2.imshow(str(p), im0)
              cv2.waitKey(1)  # 1 millisecond
        

        替换成

        if view_img:
             cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)
             cv2.resizeWindow("Webcam", 1280, 720)
             cv2.moveWindow("Webcam", 0, 100)
             cv2.imshow("Webcam", im0)
             cv2.waitKey(1)
        

        4.3 主代码

        # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
        """
        Run inference on images, videos, directories, streams, etc.
        Usage - sources:
            $ python path/to/detect.py --weights yolov5s.pt --source 0              # webcam
                      img.jpg        # image
                      vid.mp4        # video
                      path/          # directory
                      path/*.jpg     # glob
                      'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                      'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
        Usage - formats:
            $ python path/to/detect.py --weights yolov5s.pt                 # PyTorch
                                                 yolov5s.torchscript        # TorchScript
                                                 yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                                                 yolov5s.xml                # OpenVINO
                                                 yolov5s.engine             # TensorRT
                                                 yolov5s.mlmodel            # CoreML (MacOS-only)
                                                 yolov5s_saved_model        # TensorFlow SavedModel
                                                 yolov5s.pb                 # TensorFlow GraphDef
                                                 yolov5s.tflite             # TensorFlow Lite
                                                 yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
        """
        import argparse
        import os
        import sys
        from pathlib import Path
        import cv2
        import torch
        import torch.backends.cudnn as cudnn
        FILE = Path(__file__).resolve()
        ROOT = FILE.parents[0]  # YOLOv5 root directory
        if str(ROOT) not in sys.path:
            sys.path.append(str(ROOT))  # add ROOT to PATH
        ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
        from models.common import DetectMultiBackend
        from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
        from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
                                   increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
        from utils.plots import Annotator, colors, save_one_box
        from utils.torch_utils import select_device, time_sync
        from distance import person_distance,car_distance
        @torch.no_grad()
        def run(weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
                source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
                data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
                imgsz=(640, 640),  # inference size (height, width)
                conf_thres=0.25,  # confidence threshold
                iou_thres=0.45,  # NMS IOU threshold
                max_det=1000,  # maximum detections per image
                device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
                view_img=False,  # show results
                save_txt=False,  # save results to *.txt
                save_conf=False,  # save confidences in --save-txt labels
                save_crop=False,  # save cropped prediction boxes
                nosave=False,  # do not save images/videos
                classes=None,  # filter by class: --class 0, or --class 0 2 3
                agnostic_nms=False,  # class-agnostic NMS
                augment=False,  # augmented inference
                visualize=False,  # visualize features
                update=False,  # update all models
                project=ROOT / 'runs/detect',  # save results to project/name
                name='exp',  # save results to project/name
                exist_ok=False,  # existing project/name ok, do not increment
                line_thickness=3,  # bounding box thickness (pixels)
                hide_labels=False,  # hide labels
                hide_conf=False,  # hide confidences
                half=False,  # use FP16 half-precision inference
                dnn=False,  # use OpenCV DNN for ONNX inference
                ):
            source = str(source)
            save_img = not nosave and not source.endswith('.txt')  # save inference images
            is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
            is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
            webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
            if is_url and is_file:
                source = check_file(source)  # download
            # Directories
            save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
            (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
            # Load model
            device = select_device(device)
            model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
            stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
            imgsz = check_img_size(imgsz, s=stride)  # check image size
            # Half
            half &= (pt or jit or onnx or engine) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
            if pt or jit:
                model.model.half() if half else model.model.float()
            # Dataloader
            if webcam:
                view_img = check_imshow()
                cudnn.benchmark = True  # set True to speed up constant image size inference
                dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
                bs = len(dataset)  # batch_size
            else:
                dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
                bs = 1  # batch_size
            vid_path, vid_writer = [None] * bs, [None] * bs
            # Run inference
            model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half)  # warmup
            dt, seen = [0.0, 0.0, 0.0], 0
            for path, im, im0s, vid_cap, s in dataset:
                t1 = time_sync()
                im = torch.from_numpy(im).to(device)
                im = im.half() if half else im.float()  # uint8 to fp16/32
                im /= 255  # 0 - 255 to 0.0 - 1.0
                if len(im.shape) == 3:
                    im = im[None]  # expand for batch dim
                t2 = time_sync()
                dt[0] += t2 - t1
                # Inference
                visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
                pred = model(im, augment=augment, visualize=visualize)
                t3 = time_sync()
                dt[1] += t3 - t2
                # NMS
                pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
                dt[2] += time_sync() - t3
                # Second-stage classifier (optional)
                # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
                # Process predictions
                for i, det in enumerate(pred):  # per image
                    seen += 1
                    if webcam:  # batch_size >= 1
                        p, im0, frame = path[i], im0s[i].copy(), dataset.count
                        s += f'{i}: '
                    else:
                        p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
                    p = Path(p)  # to Path
                    save_path = str(save_dir / p.name)  # im.jpg
                    txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
                    s += '%gx%g ' % im.shape[2:]  # print string
                    gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                    imc = im0.copy() if save_crop else im0  # for save_crop
                    annotator = Annotator(im0, line_width=line_thickness, example=str(names))
                    if len(det):
                        # Rescale boxes from img_size to im0 size
                        det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
                        # Print results
                        for c in det[:, -1].unique():
                            n = (det[:, -1] == c).sum()  # detections per class
                            s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
                        # Write results
                        for *xyxy, conf, cls in reversed(det):
                            if save_txt:  # Write to file
                                xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                                line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                                with open(txt_path + '.txt', 'a') as f:
                                    f.write(('%g ' * len(line)).rstrip() % line + '\n')
                            if save_img or save_crop or view_img:  # Add bbox to image
                                x1 = int(xyxy[0])
                                y1 = int(xyxy[1])
                                x2 = int(xyxy[2])
                                y2 = int(xyxy[3])
                                h = y2-y1
                                if names[int(cls)] == "person":
                                    c = int(cls)  # integer class  整数类 1111111111
                                    label = None if hide_labels else (
                                        names[c] if hide_conf else f'{names[c]} {conf:.2f}')  # 111
                                    dis_m = person_distance(h)
                                    label += f'  {dis_m}m'
                                    txt = '{0}'.format(label)
                                    # annotator.box_label(xyxy, txt, color=(255, 0, 255))
                                    annotator.box_label(xyxy, txt, color=colors(c, True))
                                if names[int(cls)] == "car":
                                    c = int(cls)  # integer class  整数类 1111111111
                                    label = None if hide_labels else (
                                        names[c] if hide_conf else f'{names[c]} {conf:.2f}')  # 111
                                    dis_m = car_distance(h)
                                    label += f'  {dis_m}m'
                                    txt = '{0}'.format(label)
                                    # annotator.box_label(xyxy, txt, color=(255, 0, 255))
                                    annotator.box_label(xyxy, txt, color=colors(c, True))
                                if save_crop:
                                    save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
                    # Stream results
                    im0 = annotator.result()
                    '''if view_img:
                        cv2.imshow(str(p), im0)
                        cv2.waitKey(1)  # 1 millisecond'''
                    if view_img:
                        cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)
                        cv2.resizeWindow("Webcam", 1280, 720)
                        cv2.moveWindow("Webcam", 0, 100)
                        cv2.imshow("Webcam", im0)
                        cv2.waitKey(1)
                    # Save results (image with detections)
                    if save_img:
                        if dataset.mode == 'image':
                            cv2.imwrite(save_path, im0)
                        else:  # 'video' or 'stream'
                            if vid_path[i] != save_path:  # new video
                                vid_path[i] = save_path
                                if isinstance(vid_writer[i], cv2.VideoWriter):
                                    vid_writer[i].release()  # release previous video writer
                                if vid_cap:  # video
                                    fps = vid_cap.get(cv2.CAP_PROP_FPS)
                                    w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                                    h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                                else:  # stream
                                    fps, w, h = 30, im0.shape[1], im0.shape[0]
                                save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
                                vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                            vid_writer[i].write(im0)
                # Print time (inference-only)
                LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
            # Print results
            t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
            LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
            if save_txt or save_img:
                s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
                LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
            if update:
                strip_optimizer(weights)  # update model (to fix SourceChangeWarning)
        def parse_opt():
            parser = argparse.ArgumentParser()
            parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
            parser.add_argument('--source', type=str, default=ROOT / 'data/images/1.mp4', help='file/dir/URL/glob, 0 for webcam')
            parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
            parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
            parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
            parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
            parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
            parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
            parser.add_argument('--view-img', action='store_true', help='show results')
            parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
            parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
            parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
            parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
            parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
            parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
            parser.add_argument('--augment', action='store_true', help='augmented inference')
            parser.add_argument('--visualize', action='store_true', help='visualize features')
            parser.add_argument('--update', action='store_true', help='update all models')
            parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
            parser.add_argument('--name', default='exp', help='save results to project/name')
            parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
            parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
            parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
            parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
            parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
            parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
            opt = parser.parse_args()
            opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
            print_args(FILE.stem, opt)
            return opt
        def main(opt):
            check_requirements(exclude=('tensorboard', 'thop'))
            run(**vars(opt))
        if __name__ == "__main__":
            opt = parse_opt()
            main(opt)
        

        5. 实验效果

        实验效果如下

        更多有关单目(尺寸测量,跟踪、碰撞检测等)的文章请见:https://blog.csdn.net/qq_45077760/category_12312107.html

转载请注明来自码农世界,本文标题:《YOLOv5+单目测距(python)》

百度分享代码,如果开启HTTPS请参考李洋个人博客
每一天,每一秒,你所做的决定都会改变你的人生!

发表评论

快捷回复:

评论列表 (暂无评论,83人围观)参与讨论

还没有评论,来说两句吧...

Top