清华大学YOLOv10公版目标检测算法在地平线Bayes架构神经网络加速单元BPU上高效部署参考(PTQ方案)
—— 以RDK Ultra为例,修改Head部分,13ms疾速Python后处理程序
本文提出一种在地平线Bayes架构BPU上部署YOLOv10的思路,以YOLOv10s - Detect目标检测算法为例,使用640×640分辨率,80类别基于COCO数据集的预训练权重,让BPU加速Backbone的Neck的部分,推理时间约15ms,使用numpy优化的后处理部分,约13ms。并使用多线程推理+Web推流的方式完成了一个30fps的实时目标检测demo。本文所有程序均开源。
1. 前言
YOLOv10的厉害之处: 干掉了nms过程,变成nms-free. 也就是说对8400个bbox,每个bbox的80类别,阈值筛选完了就是最终的结果了,不用nms过程再去干掉重复识别的目标了。
但是很遗憾,这部分和BPU一点关系都没有,还是要摘到CPU上实现,虽然在RDK Ultra上100个目标nms到5个结果耗时也只是1ms左右(cv2.dnn.NMSBoxes),不过由于筛选完就是最终结果了,后处理的计算量进一步减小,使用纯numpy向量化的在RDK Ultra上实现后处理耗时仅仅13ms。精度暂时还没测,一般能正常检测出目标的精度都不会太差。
以下是Ultralytics官方文档的描述,注意这个one2one的字眼,我们修改Head导出为onnx时,需要使用one2one的。
YOLOv10, built on the Ultralytics Python package by researchers at Tsinghua University, introduces a new approach to real-time object detection, addressing both the post-processing and model architecture deficiencies found in previous YOLO versions. By eliminating non-maximum suppression (NMS) and optimizing various model components, YOLOv10 achieves state-of-the-art performance with significantly reduced computational overhead. Extensive experiments demonstrate its superior accuracy-latency trade-offs across multiple model scales.
在Bernoulli2架构的X3上面主要是Backbone部分有一个Softmax算子卡住了,在Bayes架构的Ultra上是支持手动指定量化,并且指定int16量化,控制住了这个算子的精度下降。所以目前很遗憾,X3不能较为高效的部署公版的YOLOv10模型,但是在非实时检测的场景可以尝试使用公版YOLOv10.
2. 后处理优化
2.1 数据实测
RDK Ultra串行程序数据,RDK Ultra 8×A55@1.2Ghz,2×Bayes BPU@96TOPS, YOLOv10s,原版Backbone+Neck,720万参数, 640×640分辨率,80类别,单核模型,numpy+torch向量化纯Python后处理
注:此处前处理是使用OpenCV实现,在工程应用中,往往采用nv12的数据,可以调用RDK Ultra的硬件编解码单元和VPS模块实现前处理,归一化等前处理已经融合在BPU中计算。
项目 | 延迟 |
---|---|
前处理(CPU,Resize) | 4.38 ms |
推理(BPU,pyeasyDNN) | 14.30 ms |
后处理(CPU,Python) | 12.96 ms |
RDK Ultra 极限性能(多线程 hrt_model_exec perf 测试工具)
测试条件 | 帧率 | BPU占用(最大200%) | 平均单帧延迟 |
---|---|---|---|
2线程 | 230 FPS | 158% | 8.5 ms |
8线程 | 291 FPS | 200 % | 27 ms |
2.2 后处理优化后流程详解
如下图所示,Backbone和Neck部分的算子均能较好的被Bayes架构的BPU加速,尤其是Transformer块的SoftMax算子,支持被BPU加速,使用int16量化后也可保持0.99的余弦相似度,非常给力。
Head部分和end2end的部分(如本文onnx模型所示)不能较好的被BPU加速,所以只能完全摘出来放到后处理中,用CPU实现。同时由于部署时只考虑前向传播,所以不需要对8400个Grid Cell的信息全部计算。主要的优化加速思路为先筛选,再计算,这个计算包括Classify部分的Sigmoid,Bounding Box部分的DFL计算(SoftMax回归 + Conv卷积求期望)和特征解码计算(dist2bbox, ltrb2xyxy)。
Classify部分,Dequantize操作
在模型编译时,选择了移除所有的反量化算子,这里需要在后处理中手动对Classify部分的三个输出头进行反量化。查看反量化系数的方式有多种,可以查看hb_mapper时产物的日志,也可通过BPU推理接口的API来获取。具体可参考社区文章:反量化节点的融合实现 (horizon.cc)
注意,这里每一个C维度的反量化系数都是不同的,每个头都有80个反量化系数,可以使用numpy的广播直接乘。
Classify部分,ReduceMax操作
ReduceMax操作是沿着Tensor的某一个维度找到最大值,此操作用于找到8400个Grid Cell的80个分数的最大值。操作对象是每个Grid Cell的80类别的值,在C维度操作。注意,这步操作给出的是最大值,并不是80个值中最大值的索引。
激活函数Sigmoid具有单调性,所以Sigmoid作用前的80个分数的大小关系和Sigmoid作用后的80个分数的大小关系不会改变。
S i g m o i d ( x ) = 1 1 + e − x Sigmoid(x)=\frac{1}{1+e^{-x}} Sigmoid(x)=1+e−x1
S i g m o i d ( x 1 ) > S i g m o i d ( x 2 ) ⇔ x 1 > x 2 Sigmoid(x_1) > Sigmoid(x_2) \Leftrightarrow x_1 > x_2 Sigmoid(x1)>Sigmoid(x2)⇔x1>x2
综上,bin模型直接输出的最大值(反量化完成)的位置就是最终分数最大值的位置,bin模型输出的最大值经过Sigmoid计算后就是原来onnx模型的最大值。
Classify部分,Threshold(TopK)操作
此操作用于找到8400个Grid Cell中,符合要求的Grid Cell。操作对象为8400个Grid Cell,在H和W的维度操作。如果您有阅读我的程序,你会发现我将后面H和W维度拉平了,这样只是为了程序设计和书面表达的方便,它们并没有本质上的不同。
我们假设某一个Grid Cell的某一个类别的分数记为 x x x,激活函数作用完的整型数据为 y y y,阈值筛选的过程会给定一个阈值,记为 C C C,那么此分数合格的充分必要条件为:
y = S i g m o i d ( x ) = 1 1 + e − x > C y=Sigmoid(x)=\frac{1}{1+e^{-x}}>C y=Sigmoid(x)=1+e−x1>C
由此可以得出此分数合格的充分必要条件为:
x > − l n ( 1 C − 1 ) x > -ln\left(\frac{1}{C}-1\right) x>−ln(C1−1)
此操作会符合条件的Grid Cell的索引(indices)和对应Grid Cell的最大值,这个最大值经过Sigmoid计算后就是这个Grid Cell对应类别的分数了。
Classify部分,GatherElements操作和ArgMax操作
使用Threshold(TopK)操作得到的符合条件的Grid Cell的索引(indices),在GatherElements操作中获得符合条件的Grid Cell,使用ArgMax操作得到具体是80个类别中哪一个最大,得到这个符合条件的Grid Cell的类别。
Bounding Box部分,GatherElements操作和Dequantize操作
使用Threshold(TopK)操作得到的符合条件的Grid Cell的索引(indices),在GatherElements操作中获得符合条件的Grid Cell,这里每一个C维度的反量化系数都是不同的,每个头都有64个反量化系数,可以使用numpy的广播直接乘,得到1×64×k×1的bbox信息。
Bounding Box部分,DFL:SoftMax+Conv操作
每一个Grid Cell会有4个数字来确定这个框框的位置,DFL结构会对每个框的某条边基于anchor的位置给出16个估计,对16个估计求SoftMax,然后通过一个卷积操作来求期望,这也是Anchor Free的核心设计,即每个Grid Cell仅仅负责预测1个Bounding box。假设在对某一条边偏移量的预测中,这16个数字为 l p l_p lp 或者 ( t p , t p , b p ) (t_p, t_p, b_p) (tp,tp,bp) ,其中 p = 0 , 1 , . . . , 15 p = 0,1,...,15 p=0,1,...,15那么偏移量的计算公式为:
l ^ = ∑ p = 0 15 p ⋅ e l p S , S = ∑ p = 0 15 e l p \hat{l} = \sum_{p=0}^{15}{\frac{p·e^{l_p}}{S}}, S =\sum_{p=0}^{15}{e^{l_p}} l^=p=0∑15Sp⋅elp,S=p=0∑15elp
Bounding Box部分,Decode:dist2bbox(ltrb2xyxy)操作
此操作将每个Bounding Box的ltrb描述解码为xyxy描述,ltrb分别表示左上右下四条边距离相对于Grid Cell中心的距离,相对位置还原成绝对位置后,再乘以对应特征层的采样倍数,即可还原成xyxy坐标,xyxy表示Bounding Box的左上角和右下角两个点坐标的预测值。
图片输入为 S i z e = 640 Size=640 Size=640,对于Bounding box预测分支的第 i i i个特征图 ( i = 1 , 2 , 3 ) (i=1, 2, 3) (i=1,2,3),对应的下采样倍数记为 S t r i d e ( i ) Stride(i) Stride(i),在YOLOv10s - Detect中, S t r i d e ( 1 ) = 8 , S t r i d e ( 2 ) = 16 , S t r i d e ( 3 ) = 32 Stride(1)=8, Stride(2)=16, Stride(3)=32 Stride(1)=8,Stride(2)=16,Stride(3)=32,对应特征图的尺寸记为 n i = S i z e / S t r i d e ( i ) n_i = {Size}/{Stride(i)} ni=Size/Stride(i),即尺寸为 n 1 = 80 , n 2 = 40 , n 3 = 20 n_1 = 80, n_2 = 40 ,n_3 = 20 n1=80,n2=40,n3=20三个特征图,一共有 n 1 2 + n 2 2 + n 3 3 = 8400 n_1^2+n_2^2+n_3^3=8400 n12+n22+n33=8400个Grid Cell,负责预测8400个Bounding Box。
对特征图 i i i,第 x x x行 y y y列负责预测对应尺度Bounding Box的检测框,其中 x , y ∈ [ 0 , n i ) ⋂ Z x,y \in [0, n_i)\bigcap{Z} x,y∈[0,ni)⋂Z, Z Z Z为整数的集合。DFL结构后的Bounding Box检测框描述为 l t r b ltrb ltrb描述,而我们需要的是 x y x y xyxy xyxy描述,具体的转化关系如下:
x 1 = ( x + 0.5 − l ) × S t r i d e ( i ) x_1 = (x+0.5-l)\times{Stride(i)} x1=(x+0.5−l)×Stride(i)
y 1 = ( y + 0.5 − t ) × S t r i d e ( i ) y_1 = (y+0.5-t)\times{Stride(i)} y1=(y+0.5−t)×Stride(i)
x 2 = ( x + 0.5 + r ) × S t r i d e ( i ) x_2 = (x+0.5+r)\times{Stride(i)} x2=(x+0.5+r)×Stride(i)
y 1 = ( y + 0.5 + b ) × S t r i d e ( i ) y_1 = (y+0.5+b)\times{Stride(i)} y1=(y+0.5+b)×Stride(i)
如果是YOLOv8,v9,会有一个nms操作去去掉重复识别的目标,但是YOLOv10就不需要,到这里就能得到最终的检测结果了,包括类别(id),分数(score)和位置(xyxy)。
3. 步骤参考
注:任何No such file or directory, No module named "xxx", command not found.等报错请仔细检查,请勿逐条复制运行,如果对修改过程不理解请前往地平线开发者社区从YOLOv5开始了解。
下载THU-MIG/yolov10仓库,并参考YOLOv8官方文档,配置好环境
$ git clone https://github.com/THU-MIG/yolov10.git
进入本地仓库,下载官方的预训练权重,这里以720万参数的YOLOv10s-Detect模型为例
$ cd yolov10 $ wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10s.pt
卸载yolo相关的命令行命令,这样直接修改./ultralytics/ultralytics目录即可生效。
$ conda list | grep ultralytics $ pip list | grep ultralytics # 或者 # 如果存在,则卸载 $ conda uninstall ultralytics $ pip uninstall ultralytics # 或者
修改Detect的输出头,直接将三个特征层的Bounding Box信息和Classify信息分开输出,一共6个输出头。
文件目录:./ultralytics/ultralytics/nn/modules/head.py,约第510行,v10Detect类的forward方法替换成以下内容:
def forward(self, x): bbox = [] cls = [] for i in range(self.nl): bbox.append(self.one2one_cv2[i](x[i])) cls.append(self.one2one_cv3[i](x[i])) return (bbox, cls)
运行以下Python脚本,如果有No module named onnxsim报错,安装一个即可
from ultralytics import YOLO YOLO('yolov8s.pt').export(format='onnx', simplify=True, opset=11)
参考天工开物工具链手册和OE包的参考,对模型进行检查,所有算子均在BPU上,进行编译即可:
(bpu) $ hb_mapper checker --model-type onnx --march bayes --model yolov10s.onnx (bpu) $ hb_mapper makertbin --model-type onnx --config ./yolov10s.yaml
hb_mapper makerbin时的yaml文件,node_info的Softmax算子名称需要按照check的结果修改:
model_parameters: onnx_model: './yolov10s.onnx' march: "bayes" layer_out_dump: False working_dir: 'yolov10s' output_model_file_prefix: 'yolov10s' remove_node_type: "Dequantize;" # 移除所有的反量化节点 node_info: https://blog.csdn.net/SA2672873269/article/details/{ # 指定卡在中间的那个softmax算子在BPU运行,且使用int16量化 "/model.10/attn/Softmax": https://blog.csdn.net/SA2672873269/article/details/{ 'ON': 'BPU', 'InputType': 'int16', 'OutputType': 'int16' } } input_parameters: input_name: "" input_type_rt: 'rgb' input_layout_rt: 'NCHW' input_type_train: 'rgb' input_layout_train: 'NCHW' input_shape: '' norm_type: 'data_scale' mean_value: '' scale_value: 0.003921568627451 calibration_parameters: cal_data_dir: './calibration_data_rgb_f32' cal_data_type: 'float32' compiler_parameters: compile_mode: 'latency' debug: False optimize_level: 'O3'
将编译后的bin模型拷贝到开发板,使用hrt_model_exec工具进行性能实测,其中可以调整thread_num来试探最佳的线程数量。
hrt_model_exec perf --model_file yolov10s.bin \ --model_name="" \ --core_id=0 \ --frame_count=200 \ --perf_time=0 \ --thread_num=1 \ --profile_path="."
4. 串行部署程序
使用以下程序时记得修改图片和模型文件路径,缺包少库请自行pip install安装。
# Copyright (c) 2024,WuChao D-Robotics. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np from scipy.special import softmax from time import time from hobot_dnn import pyeasy_dnn as dnn img_path = "kite.jpg" result_save_path = "kite.result.jpg" quantize_model_path = "./yolov10s_no_sigmoid.bin" input_image_size = 640 conf=0.3 conf_inverse = -np.log(1/conf - 1) print("sigmoid_inverse threshol = %.2f"%conf_inverse) # 一些常量或函数 coco_names = [ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush" ] yolo_colors = [ (56, 56, 255), (151, 157, 255), (31, 112, 255), (29, 178, 255), (49, 210, 207), (10, 249, 72), (23, 204, 146), (134, 219, 61), (52, 147, 26), (187, 212, 0), (168, 153, 44), (255, 194, 0), (147, 69, 52), (255, 115, 100), (236, 24, 0), (255, 56, 132), (133, 0, 82), (255, 56, 203), (200, 149, 255), (199, 55, 255)] def draw_detection(img, box, score, class_id): x1, y1, x2, y2 = box color = yolo_colors[class_id%20] cv2.rectangle(img, (x1, y1), (x2, y2), color, 2) label = f"https://blog.csdn.net/SA2672873269/article/details/{coco_names[class_id]}: https://blog.csdn.net/SA2672873269/article/details/{score:.2f}" (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) label_x = x1 label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 # Draw a filled rectangle as the background for the label text cv2.rectangle( img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color, cv2.FILLED ) # Draw the label text on the image cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) # 读取horizon_quantize模型, 并打印这个horizon_quantize模型的输入输出Tensor信息 begin_time = time() quantize_model = dnn.load(quantize_model_path) print("\033[0;31;40m" + "Load horizon quantize model time = %.2f ms"%(1000*(time() - begin_time)) + "\033[0m") print("-> input tensors") for i, quantize_input in enumerate(quantize_model[0].inputs): print(f"intput[https://blog.csdn.net/SA2672873269/article/details/{i}], name=https://blog.csdn.net/SA2672873269/article/details/{quantize_input.name}, type=https://blog.csdn.net/SA2672873269/article/details/{quantize_input.properties.dtype}, shape=https://blog.csdn.net/SA2672873269/article/details/{quantize_input.properties.shape}") print("-> output tensors") for i, quantize_input in enumerate(quantize_model[0].outputs): print(f"output[https://blog.csdn.net/SA2672873269/article/details/{i}], name=https://blog.csdn.net/SA2672873269/article/details/{quantize_input.name}, type=https://blog.csdn.net/SA2672873269/article/details/{quantize_input.properties.dtype}, shape=https://blog.csdn.net/SA2672873269/article/details/{quantize_input.properties.shape}") # 准备一些常量 # 提前将反量化系数准备好 s_bboxes_scale = quantize_model[0].outputs[0].properties.scale_data[:,np.newaxis] m_bboxes_scale = quantize_model[0].outputs[1].properties.scale_data[:,np.newaxis] l_bboxes_scale = quantize_model[0].outputs[2].properties.scale_data[:,np.newaxis] s_clses_scale = quantize_model[0].outputs[3].properties.scale_data[:, np.newaxis] m_clses_scale = quantize_model[0].outputs[4].properties.scale_data[:, np.newaxis] l_clses_scale = quantize_model[0].outputs[5].properties.scale_data[:, np.newaxis] # DFL求期望的系数, 只需要生成一次 weights_static = np.array([i for i in range(16)]).astype(np.float32)[np.newaxis, :, np.newaxis] # 提前准备一些索引, 只需要生成一次 static_index = np.arange(8400) # anchors, 只需要生成一次 s_anchor = np.stack([np.tile(np.linspace(0.5, 79.5, 80), reps=80), np.repeat(np.arange(0.5, 80.5, 1), 80)], axis=0) m_anchor = np.stack([np.tile(np.linspace(0.5, 39.5, 40), reps=40), np.repeat(np.arange(0.5, 40.5, 1), 40)], axis=0) l_anchor = np.stack([np.tile(np.linspace(0.5, 19.5, 20), reps=20), np.repeat(np.arange(0.5, 20.5, 1), 20)], axis=0) # 读取图片并利用resize的方式进行前处理 begin_time = time() img = cv2.imread(img_path) print("\033[0;31;40m" + "cv2.imread time = %.2f ms"%(1000*(time() - begin_time)) + "\033[0m") begin_time = time() input_tensor = cv2.resize(img, (input_image_size, input_image_size), interpolation=cv2.INTER_NEAREST) input_tensor = cv2.cvtColor(input_tensor, cv2.COLOR_BGR2RGB) # input_tensor = np.array(input_tensor) / 255.0 input_tensor = np.transpose(input_tensor, (2, 0, 1)) input_tensor = np.expand_dims(input_tensor, axis=0)# .astype(np.float32) # NCHW print("\033[0;31;40m" + "Pre Process time = %.2f ms"%(1000*(time() - begin_time)) + "\033[0m") print(f"https://blog.csdn.net/SA2672873269/article/details/{input_tensor.shape = }") img_h, img_w = img.shape[0:2] y_scale, x_scale = img_h/input_image_size, img_w/input_image_size # 推理 begin_time = time() quantize_outputs = quantize_model[0].forward(input_tensor) print("\033[0;31;40m" + "BPU Forward time = %.2f ms"%(1000*(time() - begin_time)) + "\033[0m") begin_time = time() # bbox: 转为numpy, reshape s_bboxes = quantize_outputs[0].buffer.reshape(64, -1) # (64,6400) m_bboxes = quantize_outputs[1].buffer.reshape(64, -1) # (64,1600) l_bboxes = quantize_outputs[2].buffer.reshape(64, -1) # (64,400) # classify: 转为numpy, reshape, 反量化 s_clses = quantize_outputs[3].buffer.reshape(80, -1).astype(np.float32) * s_clses_scale # (80,6400) m_clses = quantize_outputs[4].buffer.reshape(80, -1).astype(np.float32) * m_clses_scale # (80,1600) l_clses = quantize_outputs[5].buffer.reshape(80, -1).astype(np.float32) * l_clses_scale # (80,400) # classify: 利用numpy向量化操作完成阈值筛选(优化版 2.0) s_max_scores = np.max(s_clses, axis=0) #s_valid_indices = np.where(s_max_scores >= conf_inverse) s_valid_indices = np.flatnonzero(s_max_scores >= conf_inverse) # 得到大于阈值分数的索引,此时为小数字 s_ids = np.argmax(s_clses[:,s_valid_indices], axis=0) s_scores = s_max_scores[s_valid_indices] m_max_scores = np.max(m_clses, axis=0) #m_valid_indices = np.where(m_max_scores >= conf_inverse) m_valid_indices = np.flatnonzero(m_max_scores >= conf_inverse) # 得到大于阈值分数的索引,此时为小数字 m_ids = np.argmax(m_clses[:,m_valid_indices], axis=0) m_scores = m_max_scores[m_valid_indices] l_max_scores = np.max(l_clses, axis=0) #l_valid_indices = np.where(l_max_scores >= conf_inverse) l_valid_indices = np.flatnonzero(l_max_scores >= conf_inverse) # 得到大于阈值分数的索引,此时为小数字 l_ids = np.argmax(l_clses[:,l_valid_indices], axis=0) l_scores = l_max_scores[l_valid_indices] # 3个Classify分类分支:Sigmoid计算 s_scores = 1 / (1 + np.exp(-s_scores)) m_scores = 1 / (1 + np.exp(-m_scores)) l_scores = 1 / (1 + np.exp(-l_scores)) # 3个Bounding Box分支:反量化 s_bboxes_float32 = s_bboxes[:,s_valid_indices].astype(np.float32) * s_bboxes_scale m_bboxes_float32 = m_bboxes[:,m_valid_indices].astype(np.float32) * m_bboxes_scale l_bboxes_float32 = l_bboxes[:,l_valid_indices].astype(np.float32) * l_bboxes_scale # 3个Bounding Box分支:dist2bbox(ltrb2xyxy) s_ltrb_indices = np.sum(softmax(s_bboxes_float32.reshape(4, 16,-1), axis=1) * weights_static, axis=1) s_anchor_indices = s_anchor[:,s_valid_indices] s_x1y1 = s_anchor_indices - s_ltrb_indices[0:2] s_x2y2 = s_anchor_indices + s_ltrb_indices[2:4] s_dbboxes = np.vstack([s_x1y1, s_x2y2]).transpose(1,0)*8 m_ltrb_indices = np.sum(softmax(m_bboxes_float32.reshape(4, 16,-1), axis=1) * weights_static, axis=1) m_anchor_indices = m_anchor[:,m_valid_indices] m_x1y1 = m_anchor_indices - m_ltrb_indices[0:2] m_x2y2 = m_anchor_indices + m_ltrb_indices[2:4] m_dbboxes = np.vstack([m_x1y1, m_x2y2]).transpose(1,0)*16 l_ltrb_indices = np.sum(softmax(l_bboxes_float32.reshape(4, 16,-1), axis=1) * weights_static, axis=1) l_anchor_indices = l_anchor[:,l_valid_indices] l_x1y1 = l_anchor_indices - l_ltrb_indices[0:2] l_x2y2 = l_anchor_indices + l_ltrb_indices[2:4] l_dbboxes = np.vstack([l_x1y1, l_x2y2]).transpose(1,0)*32 # 大中小特征层阈值筛选结果拼接 dbboxes = np.concatenate((s_dbboxes, m_dbboxes, l_dbboxes), axis=0) scores = np.concatenate((s_scores, m_scores, l_scores), axis=0) ids = np.concatenate((s_ids, m_ids, l_ids), axis=0) print("\033[0;31;40m" + "Post Process time = %.2f ms"%(1000*(time() - begin_time)) + "\033[0m") # 绘制 begin_time = time() for score, class_id, xyxy in zip(scores, ids, dbboxes): x1, y1, x2, y2 = xyxy x1, y1, x2, y2 = int(x1*x_scale), int(y1*y_scale), int(x2*x_scale), int(y2*y_scale) print("(%d, %d, %d, %d) -> %s: %.2f"%(x1,y1,x2,y2, coco_names[class_id], score)) draw_detection(img, (x1, y1, x2, y2), score, class_id) print("\033[0;31;40m" + "Draw Result time = %.2f ms"%(1000*(time() - begin_time)) + "\033[0m") # 保存图片到本地 begin_time = time() cv2.imwrite(result_save_path, img) print("\033[0;31;40m" + "cv2.imwrite time = %.2f ms"%(1000*(time() - begin_time)) + "\033[0m")
5. 并行部署程序
5.1 串并行程序设计
我们已经通过CPU和BPU异构计算,得到了一个相对高效的程序,进行端到端(end2end)的目标检测任务,并且在实际的工程应用中,可以灵活选择输入和输出的设备或者对象,满足现场应用的需求。
如果要对实时的视频流进行处理,一种经典的方式是使用串行程序设计,在While循环中,交替的进行整个端到端的处理流程。这种处理的方式好处是程序足够简单直观,但是由于地平线RDK Ultra智能计算平台异构计算的特性,在读取图片和保存图片的过程中,CPU处于IO状态,等待数据移动进内存,CPU和BPU均未工作,在前处理、后处理和渲染的过程中,CPU在工作,但是并非8核心均在工作,同时,CPU处于空闲状态,在推理的过程中,BPU在工作,但是也并非2核心均在工作,同时,CPU处于空闲状态。对串行程序而言,对于多核心CPU和BPU这种异构计算平台,没有利用好计算能力,所以需要进行并行程序设计
Python不承担计算任务,只是调用cv2,BPU,torch和numpy的接口,所以可以使用多线程实现实时视频流检测,不会受到Python全局GIL锁的影响。我们可以使用一个独立线程负责输入图像,一个独立线程负责输出图像,这两个线程只会在每次输入或者输出时占用CPU,等待输入或输出的时间这个线程会被操作系统休眠。而线程池会从输入队列中读取图像进行端到端推理,推理结果放在输出队列中,在具体的程序设计中,我使用了4个线程来进行端到端推理,这个过程也是由操作系统来调度,充分利用了CPU和BPU的计算能力。
5.2 推流到Web效果
【地平线Bayes架构BPU跑YOLOv10s稳稳30fps,RDK Ultra开发板】 https://www.bilibili.com/video/BV1X7421d75q
5.3 推流程序
注意,文件目录参考如下:
. ├── templates │ └── index.html └── YOLOv10_HorizonRT_wucPostprocess_Web.py
index.html
YOLOv10s实时视频推流 演示 YOLOv10s - Detect 实时视频推流 演示
实时视频推流
RDK Ultra 开发板 参数: 8×A55@1.2Ghz, 2×Bayes BPU@96TOPS
YOLOv10s - Detect, 640×640, COCO2017数据集, 80类别
YOLOv10_HorizonRT_wucPostprocess_Web.py
#!/user/bin/env python # Copyright (c) 2024,WuChao D-Robotics. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2, argparse, sys import numpy as np from threading import Thread, Lock from queue import Queue from scipy.special import softmax from time import time, sleep from hobot_dnn import pyeasy_dnn as dnn from flask import Flask, render_template, Response def main(): # 线程数配置 n2 = 2 # 推理视频帧线程数 # 用于控制线程的全局变量 global is_loading, is_forwarding, is_writing is_loading, is_forwarding, is_writing = True, True, True # 推理实例 model = YOLOv10_Detect() # 任务队列 global task_queue, save_queue task_queue = Queue(30) save_queue = Queue(30) # 结果保存队列多缓存一些 sleep(1) # 创建并启动读取线程 video_path = "/dev/video0" task_loader = Dataloader_videoCapture(video_path, task_queue, 0.005) task_loader.start() # 创建并启动推理线程 inference_threads = [InferenceThread(_, model, task_queue, save_queue, 0.005) for _ in range(n2)] for t in inference_threads: t.start() # 创建并启动日志打印线程 result_writer = msg_printer(task_queue, save_queue, 0.5) result_writer.start() app.run(debug=False, port=7998, host="0.0.0.0") print("[INFO] wait_join") task_loader.join() for t in inference_threads: t.join() result_writer.join() result_writer.join() print("[INFO] All task done.") exit() class YOLOv10_Detect(): def __init__(self): quantize_model_path = "./yolov10s_no_sigmoid.bin" self.input_image_size = 640 self.conf=0.3 self.conf_inverse = -np.log(1/self.conf - 1) print("sigmoid_inverse threshol = %.2f"%self.conf_inverse) # 读取horizon_quantize模型, 并打印这个horizon_quantize模型的输入输出Tensor信息 begin_time = time() self.quantize_model = dnn.load(quantize_model_path) print("\033[0;31;40m" + "Load horizon quantize model time = %.2f ms"%(1000*(time() - begin_time)) + "\033[0m") print("-> input tensors") for i, quantize_input in enumerate(self.quantize_model[0].inputs): print(f"intput[https://blog.csdn.net/SA2672873269/article/details/{i}], name=https://blog.csdn.net/SA2672873269/article/details/{quantize_input.name}, type=https://blog.csdn.net/SA2672873269/article/details/{quantize_input.properties.dtype}, shape=https://blog.csdn.net/SA2672873269/article/details/{quantize_input.properties.shape}") print("-> output tensors") for i, quantize_input in enumerate(self.quantize_model[0].outputs): print(f"output[https://blog.csdn.net/SA2672873269/article/details/{i}], name=https://blog.csdn.net/SA2672873269/article/details/{quantize_input.name}, type=https://blog.csdn.net/SA2672873269/article/details/{quantize_input.properties.dtype}, shape=https://blog.csdn.net/SA2672873269/article/details/{quantize_input.properties.shape}") # 准备一些常量 # 提前将反量化系数准备好 self.s_bboxes_scale = self.quantize_model[0].outputs[0].properties.scale_data[:,np.newaxis] self.m_bboxes_scale = self.quantize_model[0].outputs[1].properties.scale_data[:,np.newaxis] self.l_bboxes_scale = self.quantize_model[0].outputs[2].properties.scale_data[:,np.newaxis] self.s_clses_scale = self.quantize_model[0].outputs[3].properties.scale_data[:, np.newaxis] self.m_clses_scale = self.quantize_model[0].outputs[4].properties.scale_data[:, np.newaxis] self.l_clses_scale = self.quantize_model[0].outputs[5].properties.scale_data[:, np.newaxis] # DFL求期望的系数, 只需要生成一次 self.weights_static = np.array([i for i in range(16)]).astype(np.float32)[np.newaxis, :, np.newaxis] # 提前准备一些索引, 只需要生成一次 self.static_index = np.arange(8400) # anchors, 只需要生成一次 self.s_anchor = np.stack([np.tile(np.linspace(0.5, 79.5, 80), reps=80), np.repeat(np.arange(0.5, 80.5, 1), 80)], axis=0) self.m_anchor = np.stack([np.tile(np.linspace(0.5, 39.5, 40), reps=40), np.repeat(np.arange(0.5, 40.5, 1), 40)], axis=0) self.l_anchor = np.stack([np.tile(np.linspace(0.5, 19.5, 20), reps=20), np.repeat(np.arange(0.5, 20.5, 1), 20)], axis=0) def forward(self, input_tensor): return self.quantize_model[0].forward(input_tensor) def preprocess(self, img): self.img = img input_tensor = cv2.resize(img, (self.input_image_size, self.input_image_size), interpolation=cv2.INTER_NEAREST) input_tensor = cv2.cvtColor(input_tensor, cv2.COLOR_BGR2RGB) # input_tensor = np.array(input_tensor) / 255.0 input_tensor = np.transpose(input_tensor, (2, 0, 1)) input_tensor = np.expand_dims(input_tensor, axis=0)# .astype(np.float32) # NCHW img_h, img_w = img.shape[0:2] self.y_scale, self.x_scale = img_h/self.input_image_size, img_w/self.input_image_size return input_tensor def postprocess(self, quantize_outputs): # bbox: 转为numpy, reshape s_bboxes = quantize_outputs[0].buffer.reshape(64, -1) # (64,6400) m_bboxes = quantize_outputs[1].buffer.reshape(64, -1) # (64,1600) l_bboxes = quantize_outputs[2].buffer.reshape(64, -1) # (64,400) # classify: 转为numpy, reshape, 反量化 s_clses = quantize_outputs[3].buffer.reshape(80, -1).astype(np.float32) * self.s_clses_scale # (80,6400) m_clses = quantize_outputs[4].buffer.reshape(80, -1).astype(np.float32) * self.m_clses_scale # (80,1600) l_clses = quantize_outputs[5].buffer.reshape(80, -1).astype(np.float32) * self.l_clses_scale # (80,400) # classify: 利用numpy向量化操作完成阈值筛选(优化版 2.0) s_max_scores = np.max(s_clses, axis=0) #s_valid_indices = np.where(s_max_scores >= conf_inverse) s_valid_indices = np.flatnonzero(s_max_scores >= self.conf_inverse) s_ids = np.argmax(s_clses[:,s_valid_indices], axis=0) s_scores = s_max_scores[s_valid_indices] m_max_scores = np.max(m_clses, axis=0) #m_valid_indices = np.where(m_max_scores >= conf_inverse) m_valid_indices = np.flatnonzero(m_max_scores >= self.conf_inverse) m_ids = np.argmax(m_clses[:,m_valid_indices], axis=0) m_scores = m_max_scores[m_valid_indices] l_max_scores = np.max(l_clses, axis=0) #l_valid_indices = np.where(l_max_scores >= conf_inverse) l_valid_indices = np.flatnonzero(l_max_scores >= self.conf_inverse) l_ids = np.argmax(l_clses[:,l_valid_indices], axis=0) l_scores = l_max_scores[l_valid_indices] # 3个Classify分类分支:Sigmoid计算 s_scores = 1 / (1 + np.exp(-s_scores)) m_scores = 1 / (1 + np.exp(-m_scores)) l_scores = 1 / (1 + np.exp(-l_scores)) # 3个Bounding Box分支:反量化 s_bboxes_float32 = s_bboxes[:,s_valid_indices].astype(np.float32) * self.s_bboxes_scale m_bboxes_float32 = m_bboxes[:,m_valid_indices].astype(np.float32) * self.m_bboxes_scale l_bboxes_float32 = l_bboxes[:,l_valid_indices].astype(np.float32) * self.l_bboxes_scale # 3个Bounding Box分支:dist2bbox(ltrb2xyxy) s_ltrb_indices = np.sum(softmax(s_bboxes_float32.reshape(4, 16,-1), axis=1) * self.weights_static, axis=1) s_anchor_indices = self.s_anchor[:,s_valid_indices] s_x1y1 = s_anchor_indices - s_ltrb_indices[0:2] s_x2y2 = s_anchor_indices + s_ltrb_indices[2:4] s_dbboxes = np.vstack([s_x1y1, s_x2y2]).transpose(1,0)*8 m_ltrb_indices = np.sum(softmax(m_bboxes_float32.reshape(4, 16,-1), axis=1) * self.weights_static, axis=1) m_anchor_indices = self.m_anchor[:,m_valid_indices] m_x1y1 = m_anchor_indices - m_ltrb_indices[0:2] m_x2y2 = m_anchor_indices + m_ltrb_indices[2:4] m_dbboxes = np.vstack([m_x1y1, m_x2y2]).transpose(1,0)*16 l_ltrb_indices = np.sum(softmax(l_bboxes_float32.reshape(4, 16,-1), axis=1) * self.weights_static, axis=1) l_anchor_indices = self.l_anchor[:,l_valid_indices] l_x1y1 = l_anchor_indices - l_ltrb_indices[0:2] l_x2y2 = l_anchor_indices + l_ltrb_indices[2:4] l_dbboxes = np.vstack([l_x1y1, l_x2y2]).transpose(1,0)*32 # 大中小特征层阈值筛选结果拼接 dbboxes = np.concatenate((s_dbboxes, m_dbboxes, l_dbboxes), axis=0) scores = np.concatenate((s_scores, m_scores, l_scores), axis=0) ids = np.concatenate((s_ids, m_ids, l_ids), axis=0) # 绘制 for score, class_id, xyxy in zip(scores, ids, dbboxes): x1, y1, x2, y2 = xyxy x1, y1, x2, y2 = int(x1*self.x_scale), int(y1*self.y_scale), int(x2*self.x_scale), int(y2*self.y_scale) # print("(%d, %d, %d, %d) -> %s: %.2f"%(x1,y1,x2,y2, coco_names[class_id], score)) draw_detection(self.img, (x1, y1, x2, y2), score, class_id) return self.img def signal_handler(signal, frame): global is_loading, is_forwarding, is_writing is_loading, is_forwarding, is_writing = False, False, False print('Ctrl+C, stopping!!!') sys.exit(0) class Dataloader_videoCapture(Thread): # 从cap中读帧, 一直读到无帧可读 # delay_time 用于控制读帧的频率,尽量和极限帧率的帧间隔一致, 一般设置为0.033 s def __init__(self, video_path, task_queue, delay_time): Thread.__init__(self) self.cap = cv2.VideoCapture(video_path) self.task_queue = task_queue self.delay_time = delay_time def run(self): global is_loading while is_loading: if not self.task_queue.full(): # begin_time = time() ret, frame = self.cap.read() if ret: self.task_queue.put(frame) else: is_loading = False self.cap.release() break # print("\033[0;31;40m" + "Read time = %.2f ms"%(1000*(time() - begin_time)) + "\033[0m") sleep(self.delay_time) print("[INFO] Dateloader thread exit.") class InferenceThread(Thread): # 推理的线程 def __init__(self, i, model, task_queue, result_queue, delay_time): Thread.__init__(self) self.task_queue = task_queue self.result_queue = result_queue self.model = model self.delay_time = delay_time self.i = i def run(self): global is_forwarding, is_running, frame_counter while is_forwarding: if not self.task_queue.empty(): # begin_time = time() # 从任务队列取图 img = self.task_queue.get() # 存储拉伸量 img_h, img_w = img.shape[0:2] y_scale, x_scale = img_h/self.model.input_image_size, img_w/self.model.input_image_size # 前处理 input_tensor = self.model.preprocess(img) # 推理 output_tensors = self.model.forward(input_tensor) # 后处理 result = self.model.postprocess(output_tensors) # 结果存入结果队列 trytimes = 5 while trytimes > 0: trytimes -= 1 if not self.result_queue.full(): trytimes = 0 self.result_queue.put(result) # 帧率计数器自增 if trytimes >= 0: frame_counter += 1 # print("\033[0;31;40m" + "Forward time = %.2f ms"%(1000*(time() - begin_time)) + "\033[0m") elif not is_loading: is_forwarding = False sleep(self.delay_time) print(f"[INFO] Forward thread https://blog.csdn.net/SA2672873269/article/details/{self.i} exit.") app = Flask(__name__) @app.route('/video_feed') def video_feed(): return Response(gen_frames(), mimetype='multipart/x-mixed-replace; boundary=frame') @app.route('/') def index(): return render_template('index.html') def gen_frames(): global is_forwarding, is_writing, save_queue while not save_queue.empty(): save_queue.get() while is_writing: if not save_queue.empty(): # begin_time = time() img_result = save_queue.get() cv2.putText(img_result, '%.2f fps'%fps, (40, 40), cv2.FONT_HERSHEY_COMPLEX, 1.5, (255, 0, 0), 2, cv2.LINE_AA) ret, buffer = cv2.imencode('.jpg', img_result, [cv2.IMWRITE_JPEG_QUALITY, 50]) frame = buffer.tobytes() yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') # print("\033[0;31;40m" + "Frame Write time = %.2f ms"%(1000*(time() - begin_time)) + "\033[0m") elif not is_forwarding: #self.out.release() is_writing = False sleep(0.001) class msg_printer(Thread): # 用于计算帧率的全局变量 def __init__(self, task_queue, save_queue, delay_time): Thread.__init__(self) self.delay_time = delay_time self.task_queue = task_queue self.save_queue = save_queue def run(self): global frame_counter, fps frame_counter = 0 fps = 0.0 begin_time = time() while is_loading or is_forwarding or is_writing: delta_time = time() - begin_time fps = frame_counter/delta_time frame_counter = 0 begin_time = time() print("Smart FPS = %.2f, task_queue_size = %d, save_queue_size = %d"%(fps, self.task_queue.qsize(), self.save_queue.qsize())) sleep(self.delay_time) print("[INFO] msg_printer thread exit.") # 一些常量或函数 coco_names = [ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush" ] yolo_colors = [ (56, 56, 255), (151, 157, 255), (31, 112, 255), (29, 178, 255), (49, 210, 207), (10, 249, 72), (23, 204, 146), (134, 219, 61), (52, 147, 26), (187, 212, 0), (168, 153, 44), (255, 194, 0), (147, 69, 52), (255, 115, 100), (236, 24, 0), (255, 56, 132), (133, 0, 82), (255, 56, 203), (200, 149, 255), (199, 55, 255)] def draw_detection(img, box, score, class_id): x1, y1, x2, y2 = box color = yolo_colors[class_id%20] cv2.rectangle(img, (x1, y1), (x2, y2), color, 2) label = f"https://blog.csdn.net/SA2672873269/article/details/{coco_names[class_id]}: https://blog.csdn.net/SA2672873269/article/details/{score:.2f}" (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) label_x = x1 label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 # Draw a filled rectangle as the background for the label text cv2.rectangle( img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color, cv2.FILLED ) # Draw the label text on the image cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) if __name__ == "__main__": main()
6. 更加高效的DataFlow设计
由于作者比较懒,所以在处理图像时无脑使用OpenCV,使用bgr8的图像作为中间数据,这里面所有涉及到的图像操作都是CPU在计算。但是实际上,在RDK系列以nv12数据作为中间数据才是最高效的。我们可以在bin模型编译时选择nv12输入,这样BPU就能直接接收nv12的数据,另外像图像编解码等操作可以使用硬件编解码器,图像缩放旋转等操作可以使用VPS,这样就能大幅降低CPU压力,提高整个系统的效率。
具体DataFlow请参考博客:TROS DataFlow - USB Camera & mipi Sensor - rtsp-CSDN博客
7. 相关模型文件和程序下载请前往地平线开发者社区
清华大学YOLOv10公版目标检测算法在地平线Bayes架构神经网络加速单元BPU上部署参考 (horizon.cc)
还没有评论,来说两句吧...