目录
背景
思路
Threejs实现
记录每条线的点数
封装原始裁剪索引数据
封装合并几何体的缓冲数据:由裁剪索引组成的 IntArray
守住该有的线段!
修改顶点着色器
修改片元着色器
完整代码
WebGL实现类似功能(简易版,便于测验)
注意
背景
场景中有大量的非连续线段,每条线段由大量的点构成(曲率较大),并且需要合并渲染,这时,一般考虑使用LineSegments画线,因为LineSegments底层是基于 gl.LINES 的WebGL标准进行绘制,v0 v1、 v1 v2、 v2 v3、 v3 v4.......
但是,这种方法会有一定代价。假设,一条曲线由5个点构成,除了首尾两个点,我们需要对中间的每个点额外拷贝一份 用于下个list段的起点,5个点要拷贝3个点,10个点要拷贝8个点,n个点要拷贝n-2个点,当点数较多时,这是一笔不小的额外开销
遵守WebGL性能优化第一原则:尽可能的减少点的数量,每个顶点都要执行顶点着色器,进行各种矩阵变换,及插值后到片元着色器的相应操作,点数太多会极大的影响性能
设想:能否不复制这些点,就能达到非连续线段的效果?
思路
使用Line类,即gl.LINE_STRIP模式绘制一条连续的线段,v0 v1、v2 v3、v4 v5......
每条线段结尾到下条线段开头 多出的折线 在片元着色器中 discard
Threejs实现
记录每条线的点数
每条线是一个独立的geometry,记录每条线的点数,得到 [line1_vertex_count, line2_vertex_count...],添加到合并后的Geometry
const stripIndexs = geometrys.map(item => item.attributes.position.count) mergeGeometry.stripIndexs = stripIndexs
封装原始裁剪索引数据
记录每条线的最后一个点的索引及其索引+1,也就是这个每个折线处的两个点的索引所在合并后的mergeGeometry的顶点中的位置,比如,有三条线,每条线仅有首尾两个点(举例说明,实际n个点),则需要记录 1 2 3 4 这四个索引,如下
let cumulativeIndex = -1; let originCropIndexes: Array= []; for (let i = 0; i < geometry.stripIndexs.length - 1; i++) { cumulativeIndex += geometry.stripIndexs[i]; originCropIndexes.push(cumulativeIndex); originCropIndexes.push(cumulativeIndex + 1); }
封装合并几何体的缓冲数据:由裁剪索引组成的 IntArray
将上一步得到的原始裁剪索引数组,每个裁剪索引按序映射到 缓冲数组 initCroppingIndexes 中,如下,遍历合并线段的所有顶点,当前索引与裁剪索引相同则按序映射,没有则默认-1,得到 [-1, 1, 2, 3, 4, -1](依然拿上述举例)
let vertexCount = geometry.attributes.position.count; let initCroppingIndexes = new Int16Array(vertexCount).fill(-1); if (originCropIndexes.length) { for (let i = 0; i < vertexCount; i++) { for (let j = 0; j < originCropIndexes.length; j++) { if (i == originCropIndexes[j]) { initCroppingIndexes[i] = originCropIndexes[j]; break; } } } } geometry.setAttribute('initCroppingIndex', new BufferAttribute(initCroppingIndexes, 1));
守住该有的线段!
数据处理并没有结束!如果现在直接到着色器中按裁剪索引去插值直接做discard,会把 1 2 3 4 顶点中的 2 3所组成的线段也discard掉,当然,这不是我们想要的,需要进一步封装相关数据用于后续着色器使用
如下图,需要再次记录 索引 2 3 4 5 6 7 ,并且连续的两对点都有不同的标识,这个至关重要,因为这些索引是要保留的所组成的线段,如果这些要保留的索引又是连续,又是相同的标识,是不是 2 ~ 7顶点间的线段又会都保留?2 3 、4 5、6 7组成的线段你是保留了,3 4、5 6线段是不是又没有剔除?陷入了无止境循环的局面....
拿上图举例,最终 continuousCroppingIndexes 所成型的数据是 [-1, -1, 0, 0, 1, 1, 0, 0, -1, -1。]如下代码
let stripIdentCount = 0; let continuousCroppingIndexes = new Int16Array(vertexCount).fill(-1); if (originCropIndexes.length) { for (let i = 1; i < vertexCount - 1; i++) { if (initCroppingIndexes[i] != -1 && initCroppingIndexes[i - 1] + 1 == initCroppingIndexes[i + 1] - 1) { continuousCroppingIndexes[i] = stripIdentCount % 4 < 2 ? 0 : 1; stripIdentCount++; } } } geometry.setAttribute('continuousCroppingIndex', new BufferAttribute(continuousCroppingIndexes, 1));
修改顶点着色器
这步很简单,将init裁剪索引缓冲数据和要保留的裁剪索引数据分别给赋顶点插值颜色,用于后续片元根据插值颜色做判断。
注意,这里continuousCroppingIndex缓冲数据是双重标识,0 0 1 1 0 0...
material.onBeforeCompile = (shader) => { shader.vertexShader = shader.vertexShader.replace( 'void main() {', [ 'attribute float initCroppingIndex;', 'attribute float continuousCroppingIndex;', 'varying vec4 vColor;', 'varying vec4 vStripCrop;', 'void handleVaryingColor() {', 'int initIndex = int(initCroppingIndex);', 'if (gl_VertexID == initIndex) {', 'vColor = vec4(vec3(1.), 0.);', '}', 'vStripCrop = vec4(vec2(1.), continuousCroppingIndex, 0.);', '}', 'void main() {', 'handleVaryingColor();' ].join('\n') ); };
修改片元着色器
可能举例更形象些:如下,1 2、3 4、5 6、7 8都会被裁剪,而并不会裁剪 2 3 、4 5 、6 7,因为该有的索引都做了成对的颜色标识,并且会区分奇偶对顶点的颜色!
如下,按需裁剪
material.onBeforeCompile = (shader) => { shader.fragmentShader = shader.fragmentShader.replace( 'void main() {', ['varying vec4 vColor;', 'varying vec4 vStripCrop;', 'void main() {'].join('\n') ); shader.fragmentShader = shader.fragmentShader.replace( 'vec4 diffuseColor = vec4( diffuse, opacity );', [ 'vec4 diffuseColor = vec4( diffuse, opacity );', 'vec4 vUnivCropColor = vec4(vec3(1.), 0.);', 'vec4 vEvenCropColor = vec4(vec2(1.), vec2(0.));', 'if(vColor == vUnivCropColor && vStripCrop != vUnivCropColor && vStripCrop != vEvenCropColor) {', 'discard;', '}', ].join('\n') ); };
完整代码
geometry和material分别是合并的几何体及其材质
const handleLineGeometryShader = (geometry, material) => { let stripIdentCount = 0; let cumulativeIndex = -1; let vertexCount = geometry.attributes.position.count; let originCropIndexes: Array= []; let initCroppingIndexes = new Int16Array(vertexCount).fill(-1); let continuousCroppingIndexes = new Int16Array(vertexCount).fill(-1); for (let i = 0; i < geometry.stripIndexs.length - 1; i++) { cumulativeIndex += geometry.stripIndexs[i]; originCropIndexes.push(cumulativeIndex); originCropIndexes.push(cumulativeIndex + 1); } if (originCropIndexes.length) { for (let i = 0; i < vertexCount; i++) { for (let j = 0; j < originCropIndexes.length; j++) { if (i == originCropIndexes[j]) { initCroppingIndexes[i] = originCropIndexes[j]; break; } } } for (let i = 1; i < vertexCount - 1; i++) { if (initCroppingIndexes[i] != -1 && initCroppingIndexes[i - 1] + 1 == initCroppingIndexes[i + 1] - 1) { continuousCroppingIndexes[i] = stripIdentCount % 4 < 2 ? 0 : 1; stripIdentCount++; } } } // console.log(originCropIndexes, initCroppingIndexes, continuousCroppingIndexes); geometry.setAttribute('initCroppingIndex', new BufferAttribute(initCroppingIndexes, 1)); geometry.setAttribute('continuousCroppingIndex', new BufferAttribute(continuousCroppingIndexes, 1)); beforeCompileLineMaterial(material); }; const beforeCompileLineMaterial = (material) => { material.onBeforeCompile = (shader) => { shader.vertexShader = shader.vertexShader.replace( 'void main() {', [ 'attribute float initCroppingIndex;', 'attribute float continuousCroppingIndex;', 'varying vec4 vColor;', 'varying vec4 vStripCrop;', 'void handleVaryingColor() {', 'int initIndex = int(initCroppingIndex);', 'if (gl_VertexID == initIndex) {', 'vColor = vec4(vec3(1.), 0.);', '}', 'vStripCrop = vec4(vec2(1.), continuousCroppingIndex, 0.);', '}', 'void main() {', 'handleVaryingColor();' ].join('\n') ); shader.fragmentShader = shader.fragmentShader.replace( 'void main() {', ['varying vec4 vColor;', 'varying vec4 vStripCrop;', 'void main() {'].join('\n') ); shader.fragmentShader = shader.fragmentShader.replace( 'vec4 diffuseColor = vec4( diffuse, opacity );', [ 'vec4 diffuseColor = vec4( diffuse, opacity );', 'vec4 vUnivCropColor = vec4(vec3(1.), 0.);', 'vec4 vEvenCropColor = vec4(vec2(1.), vec2(0.));', 'if(vColor == vUnivCropColor && vStripCrop != vUnivCropColor && vStripCrop != vEvenCropColor) {', 'discard;', '}', ].join('\n') ); }; }
WebGL实现类似功能(简易版,便于测验)
var VSHADER_SOURCE = 'attribute vec4 a_Position;\n' + 'attribute float indexes;\n' + 'attribute float oneIndex;\n' + 'attribute float twoIndex;\n' + 'varying vec4 vColor;\n' + 'varying vec4 vStripCrop;\n' + 'void main() {\n' + 'int index = int(indexes);\n' + 'int oIndex = int(oneIndex);\n' + // 'int tIndex = int(twoIndex);\n' + 'if (index == oIndex) {\n' + 'vColor = vec4(vec3(1.), 0.);\n' + '}\n' + 'vStripCrop = vec4(vec2(1.), twoIndex, 0.);\n' + 'gl_Position = a_Position;\n' + '}\n'; // Fragment shader program var FSHADER_SOURCE = 'precision mediump float;\n' + 'varying vec4 vColor;\n' + 'varying vec4 vStripCrop;\n' + 'void main() {\n' + ' gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n' + 'if(vColor == vec4(vec3(1.), 0.) && vStripCrop != vec4(vec3(1.), 0.) && vStripCrop != vec4(vec2(1.), 0., 0.)) {\n' + 'discard;\n' + '}\n' + '}\n'; function main() { var canvas = document.getElementById('webgl'); var gl = getWebGLContext(canvas); if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) { console.log('Failed to intialize shaders.'); return; } var n = initVertexBuffers(gl); gl.clearColor(0.0, 0.0, 0.0, 1.0); gl.clear(gl.COLOR_BUFFER_BIT); gl.drawArrays(gl.LINE_STRIP, 0, n); } function initVertexBuffers(gl) { var vertices = new Float32Array([ -0.6, -0.8, 0.6, -0.8, -0.6, -0.5, 0.6, -0.5, -0.6, -0.2, 0.6, -0.2, -0.6, 0.1, 0.6, 0.1, -0.6, 0.4, 0.6, 0.4 ]); var indexes = new Float32Array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]); var arr1 = new Float32Array([ -1, 1, 2, 3, 4, 5, 6, 7, 8, -1 ]); var arr2 = new Float32Array([ -1, -1, 0, 0, 1, 1, 0, 0, -1, -1 ]); var n = 10; // Create a buffer object var vertexBuffer = gl.createBuffer(); var indexBuffer = gl.createBuffer(); var oneBuffer = gl.createBuffer(); var twoBuffer = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer); gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW); var a_Position = gl.getAttribLocation(gl.program, 'a_Position'); gl.vertexAttribPointer(a_Position, 2, gl.FLOAT, false, 0, 0); gl.enableVertexAttribArray(a_Position); gl.bindBuffer(gl.ARRAY_BUFFER, indexBuffer); gl.bufferData(gl.ARRAY_BUFFER, indexes, gl.STATIC_DRAW); var indexes = gl.getAttribLocation(gl.program, 'indexes'); gl.vertexAttribPointer(indexes, 1, gl.FLOAT, false, 0, 0); gl.enableVertexAttribArray(indexes); gl.bindBuffer(gl.ARRAY_BUFFER, oneBuffer); gl.bufferData(gl.ARRAY_BUFFER, arr1, gl.STATIC_DRAW); var oneIndex = gl.getAttribLocation(gl.program, 'oneIndex'); gl.vertexAttribPointer(oneIndex, 1, gl.FLOAT, false, 0, 0); gl.enableVertexAttribArray(oneIndex); gl.bindBuffer(gl.ARRAY_BUFFER, twoBuffer); gl.bufferData(gl.ARRAY_BUFFER, arr2, gl.STATIC_DRAW); var twoIndex = gl.getAttribLocation(gl.program, 'twoIndex'); gl.vertexAttribPointer(twoIndex, 1, gl.FLOAT, false, 0, 0); gl.enableVertexAttribArray(twoIndex); return n; }
注意
- 自定义的顶点缓冲数据如果是int类型的,及时你js里面是int类型,在传入shader里面的时候,vertexpoint辅助函数有个参数也会给转成float类型!则需要float声明接收,后续使用int数据再次int转换即可
- uniform变量不能直接声明为数组类型。这是因为uniform变量是在整个渲染过程中保持不变的,而数组类型通常需要在编译时知道其大小
还没有评论,来说两句吧...