【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解

【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解

码农世界 2024-06-04 后端 111 次浏览 0个评论

文章目录

  • 一、概述
    • 1.1 VRP 问题
    • 1.2 CVRP 问题
    • 1.3 VRPTW 问题
    • 二、VRPTW 的一般模型
    • 三、Python 调用 Gurobi 建模求解
      • 3.1 Solomn 数据集
      • 3.2 完整代码
      • 3.3 运行结果展示
        • 3.3.1 测试案例:c101.txt
        • 3.3.2 测试案例:r101.txt

          一、概述

          1.1 VRP 问题

          车辆路径规划问题(Vehicle Routing Problem,VRP)一般指的是:对一系列发货点和收货点,组织调用一定的车辆,安排适当的行车路线,使车辆有序地通过它们,在满足指定的约束条件下(例如:货物的需求量与发货量,交发货时间,车辆容量限制,行驶里程限制,行驶时间限制等),力争实现一定的目标(如车辆空驶总里程最短,运输总费用最低,车辆按一定时间到达,使用的车辆数最小等)。

          下图给出了一个简单的VRP的例子

          【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解

          1.2 CVRP 问题

          最基本的VRP问题叫做带容量约束的车辆路径规划问题(Capacitated Vehicle Routing Problem,CVRP)。在CVRP中,需要考虑每辆车的容量约束、车辆的路径约束和装载量约束

          1.3 VRPTW 问题

          为了考虑配送时间要求,带时间窗的车辆路径规划问题(Vehicle Routing Problem with Time Window,VRPTW)应运而生。

          VRPTW 不仅考虑CVRP的所有约束,还需要考虑时间窗约束,也就是每个顾客对应一个时间窗 [ e i , l i ] [e_i,l_i] [ei​,li​],其中 e i e_i ei​ 和 l i l_i li​ 分别代表该点的最早到达时间和最晚到达时间。顾客点 i ∈ V i \in V i∈V 的需求必须要在其时间窗内被送达

          VRPTW 已经被证明是 NP-hard 问题,其求解复杂度随着问题规模的增加而急剧增加,求解较为困难。到目前为止,求解 VRPTW 的比较高效的精确算法是分支定价算法和分支定价切割算法。


          二、VRPTW 的一般模型

          VRPTW 可以建模为一个混合整数规划问题,在给出完整数学模型之前,先引入下面的决策变量:

          x i j k = { 1 ,在最优解中,弧 ( i , j ) 被车辆 k 选中 0 ,其他 s i k = 车辆 k 到达 i 的时间 模型中涉及的其他参数为 : t i j 表示车辆在弧 ( i , j ) 上的行驶时间 M 为一个足够大的正数 {x_{ijk}}=\begin{cases} 1\text{,在最优解中,弧}\left( i,j \right) \text{被车辆}k\text{选中}\\ 0\text{,其他}\\ \end{cases} \\ {s_{ik}}=\text{车辆}k\text{到达}i\text{的时间} \\ \text{模型中涉及的其他参数为}: \\ {t_{ij}}\text{表示车辆在弧}\left( i,j \right) \text{上的行驶时间} \\ M\text{为一个足够大的正数} xijk​={1,在最优解中,弧(i,j)被车辆k选中0,其他​sik​=车辆k到达i的时间模型中涉及的其他参数为:tij​表示车辆在弧(i,j)上的行驶时间M为一个足够大的正数

          关于 M M M 的取值,实际上可以直接取非常大的正数,但是为了提高求解效率,拉紧约束。我们可以采用下面的取值方法:

          M = m a x { b i + t i j − a j } , ∀ ( i , j ) ∈ A M=max\{b_i+t_{ij}-a_j\} , \forall (i,j)\in A M=max{bi​+tij​−aj​},∀(i,j)∈A

          综合上面引出的决策变量,并参考文献(Desaulniers et al.,2006),给出的 VRPTW 的标准模型如下:

          min ⁡ ∑ k ∈ K ∑ i ∈ V ∑ j ∈ V c i j x i j k s . t . ∑ k ∈ K ∑ j ∈ V x i j k = 1 , ∀ i ∈ C    ∑ j ∈ V x 0 j k = 1 , ∀ k ∈ K    ∑ i ∈ V x i h k − ∑ j ∈ V x h j k = 0 , ∀ h ∈ C , ∀ k ∈ K    ∑ i ∈ V x i , n + 1 , k = 1 , ∀ k ∈ K    ∑ i ∈ C q i ∑ j ∈ V x i j k ⩽ Q , ∀ k ∈ K    s i k + t i j − M ( 1 − x i j k ) ⩽ s j k    , ∀ ( i , j ) ∈ A , ∀ k ∈ K    e i ⩽ s i k ⩽ l i    , ∀ i ∈ V , ∀ k ∈ K    x i j k ∈ { 0 , 1 }    , ∀ ( i , j ) ∈ A , ∀ k ∈ K \min \sum_{k\in K}{\sum_{i\in V}{\sum_{j\in V}{{c_{ij}}{x_{ijk}}}}} \\ s.t. \sum_{k\in K}{\sum_{j\in V}{{x_{ijk}}=1 , \forall i\in C}} \\ \,\, \sum_{j\in V}{{x_{0jk}}=1 , \forall k\in K} \\ \,\, \sum_{i\in V}{{x_{ihk}}-\sum_{j\in V}{{x_{hjk}}=0 , \forall h\in C,\forall k\in K}} \\ \,\, \sum_{i\in V}{x_{i,n+1,k}=1 , \forall k\in K} \\ \,\, \sum_{i\in C}{q_i\sum_{j\in V}{{x_{ijk}} \leqslant Q , \forall k\in K}} \\ \,\, {s_{ik}}+{t_{ij}}-M\left( 1-{x_{ijk}} \right) \leqslant {s_{jk}}\,\,, \forall \left( i,j \right) \in A,\forall k\in K \\ \,\, e_i\leqslant {s_{ik}}\leqslant l_i\,\,, \forall i\in V,\forall k\in K \\ \,\, {x_{ijk}}\in \left\{ 0,1 \right\} \,\,, \forall \left( i,j \right) \in A,\forall k\in K mink∈K∑​i∈V∑​j∈V∑​cij​xijk​s.t.k∈K∑​j∈V∑​xijk​=1,∀i∈Cj∈V∑​x0jk​=1,∀k∈Ki∈V∑​xihk​−j∈V∑​xhjk​=0,∀h∈C,∀k∈Ki∈V∑​xi,n+1,k​=1,∀k∈Ki∈C∑​qi​j∈V∑​xijk​⩽Q,∀k∈Ksik​+tij​−M(1−xijk​)⩽sjk​,∀(i,j)∈A,∀k∈Kei​⩽sik​⩽li​,∀i∈V,∀k∈Kxijk​∈{0,1},∀(i,j)∈A,∀k∈K

          其中, Q Q Q 为车容量, q i q_i qi​ 为第 i i i 个顾客的需求:

          • 目标函数是为了最小化所有车辆的总行驶成本(距离)
          • 约束1~4保证了每辆车必须从仓库出发,经过一个点就离开那个点,最终返回仓库
          • 约束5为车辆的容量约束
          • 约束6~7是时间窗约束,保证了车辆到达每个顾客点的时间均在时间窗内,点n+1是点o的一个备份,是为了方便实现。

            三、Python 调用 Gurobi 建模求解

            3.1 Solomn 数据集

            Solomn 数据集下载地址

            3.2 完整代码

            注意,在下面代码中,将弧 i i i 到弧 j j j 所需的时间 t i j t_{ij} tij​ 和 成本 c i j c_{ij} cij​ 都当作了弧 i i i 到弧 j j j 所需的距离来看待

            # -*- coding: utf-8 -*-#
            # Author: WSKH
            # Blog: wskh0929.blog.csdn.net
            # Time: 2023/2/8 11:14
            # Description: Python 调用 Gurobi 建模求解 VRPTW 问题
            import time
            import matplotlib.pyplot as plt
            import numpy as np
            from gurobipy import *
            class Data:
                customerNum = 0
                nodeNum = 0
                vehicleNum = 0
                capacity = 0
                corX = []
                corY = []
                demand = []
                serviceTime = []
                readyTime = []
                dueTime = []
                distanceMatrix = [[]]
            def readData(path, customerNum):
                data = Data()
                data.customerNum = customerNum
                if customerNum is not None:
                    data.nodeNum = customerNum + 2
                with open(path, 'r') as f:
                    lines = f.readlines()
                    count = 0
                    for line in lines:
                        count += 1
                        if count == 5:
                            line = line[:-1]
                            s = re.split(r" +", line)
                            data.vehicleNum = int(s[1])
                            data.capacity = float(s[2])
                        elif count >= 10 and (customerNum is None or count <= 10 + customerNum):
                            line = line[:-1]
                            s = re.split(r" +", line)
                            data.corX.append(float(s[2]))
                            data.corY.append(float(s[3]))
                            data.demand.append(float(s[4]))
                            data.readyTime.append(float(s[5]))
                            data.dueTime.append(float(s[6]))
                            data.serviceTime.append(float(s[7]))
                data.nodeNum = len(data.corX) + 1
                data.customerNum = data.nodeNum - 2
                # 回路
                data.corX.append(data.corX[0])
                data.corY.append(data.corY[0])
                data.demand.append(data.demand[0])
                data.readyTime.append(data.readyTime[0])
                data.dueTime.append(data.dueTime[0])
                data.serviceTime.append(data.serviceTime[0])
                # 计算距离矩阵
                data.distanceMatrix = np.zeros((data.nodeNum, data.nodeNum))
                for i in range(data.nodeNum):
                    for j in range(i + 1, data.nodeNum):
                        distance = math.sqrt((data.corX[i] - data.corX[j]) ** 2 + (data.corY[i] - data.corY[j]) ** 2)
                        data.distanceMatrix[i][j] = data.distanceMatrix[j][i] = distance
                return data
            class Solution:
                ObjVal = 0
                X = [[]]
                S = [[]]
                routes = [[]]
                routeNum = 0
                def __init__(self, data, model):
                    self.ObjVal = model.ObjVal
                    # X_ijk
                    self.X = [[([0] * data.vehicleNum) for _ in range(data.nodeNum)] for _ in range(data.nodeNum)]
                    # S_ik
                    self.S = [([0] * data.vehicleNum) for _ in range(data.nodeNum)]
                    # routes
                    self.routes = []
            def getSolution(data, model):
                solution = Solution(data, model)
                for m in model.getVars():
                    split_arr = re.split(r"_", m.VarName)
                    if split_arr[0] == 'X' and m.x > 0.5:
                        solution.X[int(split_arr[1])][int(split_arr[2])][int(split_arr[3])] = m.x
                    elif split_arr[0] == 'S' and m.x > 0.5:
                        solution.S[int(split_arr[1])][int(split_arr[2])] = m.x
                for k in range(data.vehicleNum):
                    i = 0
                    subRoute = []
                    subRoute.append(i)
                    finish = False
                    while not finish:
                        for j in range(data.nodeNum):
                            if solution.X[i][j][k] > 0.5:
                                subRoute.append(j)
                                i = j
                                if j == data.nodeNum - 1:
                                    finish = True
                    if len(subRoute) >= 3:
                        subRoute[-1] = 0
                        solution.routes.append(subRoute)
                        solution.routeNum += 1
                return solution
            def plot_solution(solution, customer_num):
                plt.xlabel("x")
                plt.ylabel("y")
                plt.title(f"{data_type} : {customer_num} Customers")
                plt.scatter(data.corX[0], data.corY[0], c='blue', alpha=1, marker=',', linewidths=3, label='depot')  # 起点
                plt.scatter(data.corX[1:-1], data.corY[1:-1], c='black', alpha=1, marker='o', linewidths=3,
                            label='customer')  # 普通站点
                for k in range(solution.routeNum):
                    for i in range(len(solution.routes[k]) - 1):
                        a = solution.routes[k][i]
                        b = solution.routes[k][i + 1]
                        x = [data.corX[a], data.corX[b]]
                        y = [data.corY[a], data.corY[b]]
                        plt.plot(x, y, 'k', linewidth=1)
                plt.grid(False)
                plt.legend(loc='best')
                plt.show()
            def print_solution(solution, data):
                for index, subRoute in enumerate(solution.routes):
                    distance = 0
                    load = 0
                    for i in range(len(subRoute) - 1):
                        distance += data.distanceMatrix[subRoute[i]][subRoute[i + 1]]
                        load += data.demand[subRoute[i]]
                    print(f"Route-{index + 1} : {subRoute} , distance: {distance} , load: {load}")
            def solve(data):
                # 声明模型
                model = Model("VRPTW")
                # 模型设置
                # 关闭输出
                model.setParam('OutputFlag', 0)
                # 定义变量
                X = [[[[] for _ in range(data.vehicleNum)] for _ in range(data.nodeNum)] for _ in range(data.nodeNum)]
                S = [[[] for _ in range(data.vehicleNum)] for _ in range(data.nodeNum)]
                for i in range(data.nodeNum):
                    for k in range(data.vehicleNum):
                        S[i][k] = model.addVar(data.readyTime[i], data.dueTime[i], vtype=GRB.CONTINUOUS, name=f'S_{i}_{k}')
                        for j in range(data.nodeNum):
                            X[i][j][k] = model.addVar(vtype=GRB.BINARY, name=f"X_{i}_{j}_{k}")
                # 目标函数
                obj = LinExpr(0)
                for i in range(data.nodeNum):
                    for j in range(data.nodeNum):
                        if i != j:
                            for k in range(data.vehicleNum):
                                obj.addTerms(data.distanceMatrix[i][j], X[i][j][k])
                model.setObjective(obj, GRB.MINIMIZE)
                # 约束1:车辆只能从一个点到另一个点
                for i in range(1, data.nodeNum - 1):
                    expr = LinExpr(0)
                    for j in range(data.nodeNum):
                        if i != j:
                            for k in range(data.vehicleNum):
                                if i != 0 and i != data.nodeNum - 1:
                                    expr.addTerms(1, X[i][j][k])
                    model.addConstr(expr == 1)
                # 约束2:车辆必须从仓库出发
                for k in range(data.vehicleNum):
                    expr = LinExpr(0)
                    for j in range(1, data.nodeNum):
                        expr.addTerms(1, X[0][j][k])
                    model.addConstr(expr == 1)
                # 约束3:车辆经过一个点就必须离开一个点
                for k in range(data.vehicleNum):
                    for h in range(1, data.nodeNum - 1):
                        expr1 = LinExpr(0)
                        expr2 = LinExpr(0)
                        for i in range(data.nodeNum):
                            if h != i:
                                expr1.addTerms(1, X[i][h][k])
                        for j in range(data.nodeNum):
                            if h != j:
                                expr2.addTerms(1, X[h][j][k])
                        model.addConstr(expr1 == expr2)
                # 约束4:车辆最终返回仓库
                for k in range(data.vehicleNum):
                    expr = LinExpr(0)
                    for i in range(data.nodeNum - 1):
                        expr.addTerms(1, X[i][data.nodeNum - 1][k])
                    model.addConstr(expr == 1)
                # 约束5:车辆容量约束
                for k in range(data.vehicleNum):
                    expr = LinExpr(0)
                    for i in range(1, data.nodeNum - 1):
                        for j in range(data.nodeNum):
                            if i != 0 and i != data.nodeNum - 1 and i != j:
                                expr.addTerms(data.demand[i], X[i][j][k])
                    model.addConstr(expr <= data.capacity)
                # 约束6:时间窗约束
                for k in range(data.vehicleNum):
                    for i in range(data.nodeNum):
                        for j in range(data.nodeNum):
                            if i != j:
                                model.addConstr(S[i][k] + data.distanceMatrix[i][j] - S[j][k] <= M - M * X[i][j][k])
                # 记录求解开始时间
                start_time = time.time()
                # 求解
                model.optimize()
                if model.status == GRB.OPTIMAL:
                    print("-" * 20, "Solved Successfully", '-' * 20)
                    # 输出求解总用时
                    print(f"Solve Time: {time.time() - start_time} s")
                    print(f"Total Travel Distance: {model.ObjVal}")
                    solution = getSolution(data, model)
                    plot_solution(solution, data.customerNum)
                    print_solution(solution, data)
                else:
                    print("此题无解")
            if __name__ == '__main__':
                # 哪个数据集
                data_type = "c101"
                # 数据集路径
                data_path = f'../../data/solomn_data/{data_type}.txt'
                # 顾客个数设置(从上往下读取完 customerNum 个顾客为止,例如c101文件中有100个顾客点,
                # 但是跑100个顾客点太耗时了,设置这个数是为了只选取一部分顾客点进行计算,用来快速测试算法)
                # 如果想用完整的顾客点进行计算,设置为None即可
                customerNum = 50
                # 一个很大的正数
                M = 10000000
                # 读取数据
                data = readData(data_path, customerNum)
                # 输出相关数据
                print("-" * 20, "Problem Information", '-' * 20)
                print(f'Data Type: {data_type}')
                print(f'Node Num: {data.nodeNum}')
                print(f'Customer Num: {data.customerNum}')
                print(f'Vehicle Num: {data.vehicleNum}')
                print(f'Vehicle Capacity: {data.capacity}')
                # 建模求解
                solve(data)
            

            3.3 运行结果展示

            3.3.1 测试案例:c101.txt

            设置 customerNum = 20

            -------------------- Problem Information --------------------
            Data Type: c101
            Node Num: 22
            Customer Num: 20
            Vehicle Num: 25
            Vehicle Capacity: 200.0
            -------------------- Solved Successfully --------------------
            Solve Time: 0.2966279983520508 s
            Total Travel Distance: 160.81590595966603
            Route-1 : [0, 20, 13, 17, 18, 19, 15, 16, 14, 12, 0] , distance: 101.32767502613292 , load: 200.0
            Route-2 : [0, 5, 3, 7, 8, 10, 11, 9, 6, 4, 2, 1, 0] , distance: 59.48823093353308 , load: 160.0
            

            【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解

            设置 customerNum = 50

            Data Type: c101
            Node Num: 52
            Customer Num: 50
            Vehicle Num: 25
            Vehicle Capacity: 200.0
            -------------------- Solved Successfully --------------------
            Solve Time: 4.383494138717651 s
            Total Travel Distance: 363.2468004115909
            Route-1 : [0, 5, 3, 7, 8, 10, 11, 9, 6, 4, 2, 1, 0] , distance: 59.48823093353308 , load: 160.0
            Route-2 : [0, 32, 33, 31, 35, 37, 38, 39, 36, 34, 0] , distance: 97.2271627850669 , load: 200.0
            Route-3 : [0, 43, 42, 41, 40, 44, 46, 45, 48, 50, 49, 47, 0] , distance: 59.843107259523165 , load: 140.0
            Route-4 : [0, 20, 24, 25, 27, 29, 30, 28, 26, 23, 22, 21, 0] , distance: 50.80359030264955 , load: 170.0
            Route-5 : [0, 13, 17, 18, 19, 15, 16, 14, 12, 0] , distance: 95.88470913081827 , load: 190.0
            

            【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解

            设置 customerNum = None

            -------------------- Problem Information --------------------
            Data Type: c101
            Node Num: 102
            Customer Num: 100
            Vehicle Num: 25
            Vehicle Capacity: 200.0
            -------------------- Solved Successfully --------------------
            Solve Time: 272.5895857810974 s
            Total Travel Distance: 828.9368669428341
            Route-1 : [0, 20, 24, 25, 27, 29, 30, 28, 26, 23, 22, 21, 0] , distance: 50.80359030264955 , load: 170.0
            Route-2 : [0, 57, 55, 54, 53, 56, 58, 60, 59, 0] , distance: 101.88256760196126 , load: 200.0
            Route-3 : [0, 5, 3, 7, 8, 10, 11, 9, 6, 4, 2, 1, 75, 0] , distance: 59.618077542105574 , load: 180.0
            Route-4 : [0, 98, 96, 95, 94, 92, 93, 97, 100, 99, 0] , distance: 95.94313062205805 , load: 190.0
            Route-5 : [0, 81, 78, 76, 71, 70, 73, 77, 79, 80, 0] , distance: 127.29748041459519 , load: 150.0
            Route-6 : [0, 32, 33, 31, 35, 37, 38, 39, 36, 34, 0] , distance: 97.2271627850669 , load: 200.0
            Route-7 : [0, 43, 42, 41, 40, 44, 46, 45, 48, 51, 50, 52, 49, 47, 0] , distance: 64.80747449698114 , load: 160.0
            Route-8 : [0, 90, 87, 86, 83, 82, 84, 85, 88, 89, 91, 0] , distance: 76.06956532288787 , load: 170.0
            Route-9 : [0, 13, 17, 18, 19, 15, 16, 14, 12, 0] , distance: 95.88470913081827 , load: 190.0
            Route-10 : [0, 67, 65, 63, 62, 74, 72, 61, 64, 68, 66, 69, 0] , distance: 59.403108723710105 , load: 200.0
            

            【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解

            3.3.2 测试案例:r101.txt

            设置 customerNum = 20

            -------------------- Problem Information --------------------
            Data Type: r101
            Node Num: 22
            Customer Num: 20
            Vehicle Num: 25
            Vehicle Capacity: 200.0
            -------------------- Solved Successfully --------------------
            Solve Time: 0.9535932540893555 s
            Total Travel Distance: 463.69270291007086
            Route-1 : [0, 9, 20, 1, 0] , distance: 74.91992978886165 , load: 35.0
            Route-2 : [0, 12, 3, 4, 0] , distance: 76.18033988749895 , load: 51.0
            Route-3 : [0, 2, 15, 13, 0] , distance: 62.180339887498945 , load: 38.0
            Route-4 : [0, 5, 18, 8, 17, 0] , distance: 86.57837545317302 , load: 49.0
            Route-5 : [0, 14, 16, 6, 0] , distance: 72.40405733948208 , load: 42.0
            Route-6 : [0, 11, 19, 7, 10, 0] , distance: 91.42966055355615 , load: 50.0
            

            【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解

            设置 customerNum = 50

            -------------------- Problem Information --------------------
            Data Type: r101
            Node Num: 52
            Customer Num: 50
            Vehicle Num: 25
            Vehicle Capacity: 200.0
            -------------------- Solved Successfully --------------------
            Solve Time: 4.6791017055511475 s
            Total Travel Distance: 946.6603871872358
            Route-1 : [0, 21, 40, 26, 0] , distance: 43.35023188854984 , load: 37.0
            Route-2 : [0, 33, 29, 9, 34, 24, 25, 0] , distance: 139.4708769010923 , load: 59.0
            Route-3 : [0, 39, 23, 41, 22, 4, 0] , distance: 99.11062351878482 , load: 102.0
            Route-4 : [0, 28, 12, 3, 50, 0] , distance: 51.94121366484106 , load: 61.0
            Route-5 : [0, 36, 47, 11, 19, 49, 10, 32, 1, 0] , distance: 154.4302586824376 , load: 140.0
            Route-6 : [0, 42, 14, 44, 16, 38, 37, 17, 0] , distance: 131.9204195702968 , load: 88.0
            Route-7 : [0, 2, 15, 43, 13, 0] , distance: 72.54724253800985 , load: 45.0
            Route-8 : [0, 45, 8, 46, 48, 0] , distance: 84.49944230335126 , load: 62.0
            Route-9 : [0, 5, 7, 18, 6, 0] , distance: 73.5917360311745 , load: 46.0
            Route-10 : [0, 27, 31, 30, 20, 35, 0] , distance: 95.79834208869767 , load: 81.0
            

            【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解

            设置 customerNum = 70

            -------------------- Problem Information --------------------
            Data Type: r101
            Node Num: 72
            Customer Num: 70
            Vehicle Num: 25
            Vehicle Capacity: 200.0
            -------------------- Solved Successfully --------------------
            Solve Time: 189.01783299446106 s
            Total Travel Distance: 1182.9787814963945
            Route-1 : [0, 63, 62, 11, 64, 49, 48, 0] , distance: 125.38755919928242 , load: 116.0
            Route-2 : [0, 65, 66, 20, 32, 70, 0] , distance: 117.49399251197822 , load: 82.0
            Route-3 : [0, 28, 12, 26, 0] , distance: 33.795507476994075 , load: 52.0
            Route-4 : [0, 33, 29, 3, 50, 68, 0] , distance: 90.77710269056311 , load: 82.0
            Route-5 : [0, 2, 15, 41, 22, 56, 4, 0] , distance: 88.90058825018636 , load: 63.0
            Route-6 : [0, 27, 69, 31, 30, 51, 9, 34, 35, 1, 0] , distance: 111.48892006549234 , load: 128.0
            Route-7 : [0, 45, 8, 46, 17, 60, 0] , distance: 93.91701945260407 , load: 31.0
            Route-8 : [0, 59, 42, 14, 44, 38, 57, 43, 58, 0] , distance: 131.96251141349887 , load: 119.0
            Route-9 : [0, 39, 23, 67, 55, 54, 24, 25, 0] , distance: 140.03829072128988 , load: 114.0
            Route-10 : [0, 52, 18, 6, 0] , distance: 41.290161379846566 , load: 24.0
            Route-11 : [0, 36, 47, 19, 7, 10, 0] , distance: 107.49141646738926 , load: 70.0
            Route-12 : [0, 21, 40, 53, 0] , distance: 36.27916407668437 , load: 34.0
            Route-13 : [0, 5, 61, 16, 37, 13, 0] , distance: 64.15654779058515 , load: 89.0
            

            【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解

转载请注明来自码农世界,本文标题:《【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解》

百度分享代码,如果开启HTTPS请参考李洋个人博客
每一天,每一秒,你所做的决定都会改变你的人生!

发表评论

快捷回复:

评论列表 (暂无评论,111人围观)参与讨论

还没有评论,来说两句吧...

Top