一、ElasticSearch 简介
1、简介
ElasticSearch 是一个基于 Lucene 的搜索服务器。它提供了一个分布式多员工能力的全文搜索引擎,基于 RESTful web 接口。Elasticsearch 是用 Java 语言开发的,并作为 Apache 许可条款下的开放源码发布,是一种流行的企业级搜索引擎。
ElasticSearch 用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。
2、特性
分布式的文档存储引擎
分布式的搜索引擎和分析引擎
分布式,支持PB级数据
3、使用场景
搜索领域:如百度、谷歌,全文检索等。
门户网站:访问统计、文章点赞、留言评论等。
广告推广:记录员工行为数据、消费趋势、员工群体进行定制推广等。
信息采集:记录应用的埋点数据、访问日志数据等,方便大数据进行分析。
二、ElasticSearch 基础概念
1、ElaticSearch 和 DB 的关系
在 Elasticsearch 中,文档归属于一种类型 type,而这些类型存在于索引 index 中,我们可以列一些简单的不同点,来类比传统关系型数据库:
Relational DB -> Databases -> Tables -> Rows -> Columns
Elasticsearch -> Indices -> Types -> Documents -> Fields
Elasticsearch 集群可以包含多个索引 indices,每一个索引可以包含多个类型 types,每一个类型包含多个文档 documents,然后每个文档包含多个字段 Fields。而在 DB 中可以有多个数据库 Databases,每个库中可以有多张表 Tables,没个表中又包含多行Rows,每行包含多列Columns。
2、索引
索引基本概念(indices):
索引是含义相同属性的文档集合,是 ElasticSearch 的一个逻辑存储,可以理解为关系型数据库中的数据库,ElasticSearch 可以把索引数据存放到一台服务器上,也可以 sharding 后存到多台服务器上,每个索引有一个或多个分片,每个分片可以有多个副本。
索引类型(index_type):
索引可以定义一个或多个类型,文档必须属于一个类型。在 ElasticSearch 中,一个索引对象可以存储多个不同用途的对象,通过索引类型可以区分单个索引中的不同对象,可以理解为关系型数据库中的表。每个索引类型可以有不同的结构,但是不同的索引类型不能为相同的属性设置不同的类型。
3、文档
文档(document):
文档是可以被索引的基本数据单位。存储在 ElasticSearch 中的主要实体叫文档 document,可以理解为关系型数据库中表的一行记录。每个文档由多个字段构成,ElasticSearch 是一个非结构化的数据库,每个文档可以有不同的字段,并且有一个唯一的标识符。
4、映射
映射(mapping):
ElasticSearch 的 Mapping 非常类似于静态语言中的数据类型:声明一个变量为 int 类型的变量,以后这个变量都只能存储 int 类型的数据。同样的,一个 number 类型的 mapping 字段只能存储 number 类型的数据。
同语言的数据类型相比,Mapping 还有一些其他的含义,Mapping 不仅告诉 ElasticSearch 一个 Field 中是什么类型的值, 它还告诉 ElasticSearch 如何索引数据以及数据是否能被搜索到。
ElaticSearch 默认是动态创建索引和索引类型的 Mapping 的。这就相当于无需定义 Solr 中的 Schema,无需指定各个字段的索引规则就可以索引文件,很方便。但有时方便就代表着不灵活。比如,ElasticSearch 默认一个字段是要做分词的,但我们有时要搜索匹配整个字段却不行。如有统计工作要记录每个城市出现的次数。对于 name 字段,若记录 new york 文本,ElasticSearch 可能会把它拆分成 new 和 york 这两个词,分别计算这个两个单词的次数,而不是我们期望的 new york。
三、SpringBoot 项目引入 ElasticSearch 依赖
下面介绍下 SpringBoot 如何通过 elasticsearch-rest-high-level-client 工具操作 ElasticSearch,这里需要说一下,为什么没有使用 Spring 家族封装的 spring-data-elasticsearch。
主要原因是灵活性和更新速度,Spring 将 ElasticSearch 过度封装,让开发者很难跟 ES 的 DSL 查询语句进行关联。再者就是更新速度,ES 的更新速度是非常快,但是 spring-data-elasticsearch 更新速度比较缓慢。
由于上面两点,所以选择了官方推出的 Java 客户端 elasticsearch-rest-high-level-client,它的代码写法跟 DSL 语句很相似,懂 ES 查询的使用其上手很快。
【注意SpringBoot的版本-es的版本对应】
1、Maven 引入相关依赖
- lombok:lombok 工具依赖。
- fastjson:用于将 JSON 转换对象的依赖。
- spring-boot-starter-web: SpringBoot 的 Web 依赖。
- elasticsearch:ElasticSearch:依赖,需要和 ES 版本保持一致。
- elasticsearch-rest-high-level-client:用于操作 ES 的 Java 客户端。
4.0.0 com.example elasticsearch0.0.1-SNAPSHOT elasticsearch Demo project for Spring Boot 1.8 UTF-8 UTF-8 2.3.12.RELEASE org.springframework.boot spring-boot-starter-weborg.springframework.boot spring-boot-starter-testtest org.junit.vintage junit-vintage-engineorg.projectlombok lomboktrue com.alibaba fastjson1.2.61 org.elasticsearch.client elasticsearch-rest-high-level-client7.6.1 org.elasticsearch elasticsearch7.6.1 org.springframework.boot spring-boot-dependencies${spring-boot.version} pom import org.apache.maven.plugins maven-compiler-plugin3.8.1 1.8 UTF-8 org.springframework.boot spring-boot-maven-plugin${spring-boot.version} com.example.elasticsearch.ElasticsearchApplication true repackage repackage 2、ElasticSearch 连接配置
(1)、application.yml 配置文件
为了方便更改连接 ES 的连接配置,所以我们将配置信息放置于 application.yml 中:
server: port: 8080 servlet: context-path: /search elasticsearch: schema: http address: 127.0.0.1:9200 connectTimeout: 10000 socketTimeout: 10000 connectionRequestTimeout: 10000 maxConnectNum: 100 maxConnectPerRoute: 100 myindex: testindex
(2)、java 连接配置类
这里需要写一个 Java 配置类读取 application 中的配置信息:
package com.example.elasticsearch.demos.config; import org.apache.http.HttpHost; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.RestClientBuilder; import org.elasticsearch.client.RestHighLevelClient; import org.springframework.beans.factory.annotation.Value; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import java.util.ArrayList; import java.util.List; /** * ElasticSearch 配置 */ @Configuration public class ElasticSearchConfig { /** 协议 */ @Value("${elasticsearch.schema:http}") private String schema; /** 集群地址,如果有多个用“,”隔开 */ @Value("${elasticsearch.address}") private String address; /** 连接超时时间 */ @Value("${elasticsearch.connectTimeout:5000}") private int connectTimeout; /** Socket 连接超时时间 */ @Value("${elasticsearch.socketTimeout:10000}") private int socketTimeout; /** 获取连接的超时时间 */ @Value("${elasticsearch.connectionRequestTimeout:5000}") private int connectionRequestTimeout; /** 最大连接数 */ @Value("${elasticsearch.maxConnectNum:100}") private int maxConnectNum; /** 最大路由连接数 */ @Value("${elasticsearch.maxConnectPerRoute:100}") private int maxConnectPerRoute; @Bean public RestHighLevelClient restHighLevelClient() { // 拆分地址 List
hostLists = new ArrayList<>(); String[] hostList = address.split(","); for (String addr : hostList) { String host = addr.split(":")[0]; String port = addr.split(":")[1]; hostLists.add(new HttpHost(host, Integer.parseInt(port), schema)); } // 转换成 HttpHost 数组 HttpHost[] httpHost = hostLists.toArray(new HttpHost[]{}); // 构建连接对象 RestClientBuilder builder = RestClient.builder(httpHost); // 异步连接延时配置 builder.setRequestConfigCallback(requestConfigBuilder -> { requestConfigBuilder.setConnectTimeout(connectTimeout); requestConfigBuilder.setSocketTimeout(socketTimeout); requestConfigBuilder.setConnectionRequestTimeout(connectionRequestTimeout); return requestConfigBuilder; }); // 异步连接数配置 builder.setHttpClientConfigCallback(httpClientBuilder -> { httpClientBuilder.setMaxConnTotal(maxConnectNum); httpClientBuilder.setMaxConnPerRoute(maxConnectPerRoute); return httpClientBuilder; }); return new RestHighLevelClient(builder); } } 四、索引操作示例
这里示例会指出通过Postman的 Restful 工具操作与对应的 Java 代码操作的两个示例。
1、Restful 操作示例
创建索引
创建名为 testindex 的索引与对应 Mapping。
PUT http://localhost:9200/testindex { "mappings": { "doc": { "dynamic": true, "properties": { "name": { "type": "text", "fields": { "keyword": { "type": "keyword" } } }, "address": { "type": "text", "fields": { "keyword": { "type": "keyword" } } }, "remark": { "type": "text", "fields": { "keyword": { "type": "keyword" } } }, "age": { "type": "integer" }, "salary": { "type": "float" }, "birthDate": { "type": "date", "format": "yyyy-MM-dd" }, "createTime": { "type": "date" } } } } }
删除索引
删除 mydlq-user 索引。
DELETE http://localhost:9200/testindex
2、Java 代码示例
package com.example.elasticsearch.demos.web.service.base; import lombok.extern.slf4j.Slf4j; import org.elasticsearch.action.admin.indices.create.CreateIndexRequest; import org.elasticsearch.action.admin.indices.create.CreateIndexResponse; import org.elasticsearch.action.admin.indices.delete.DeleteIndexRequest; import org.elasticsearch.action.admin.indices.get.GetIndexRequest; import org.elasticsearch.action.support.master.AcknowledgedResponse; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.common.settings.Settings; import org.elasticsearch.common.xcontent.XContentBuilder; import org.elasticsearch.common.xcontent.XContentFactory; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; import java.io.IOException; /** * 索引操作 */ @Slf4j @Service public class IndexService { @Autowired private RestHighLevelClient restHighLevelClient; /** * 验证索引是否存在 */ public Object existsIndex(String indexName) { Object result = ""; try { // 获取索引请求 GetIndexRequest request = new GetIndexRequest(); // 设置要查询的索引名称 request.indices(indexName); // 执行请求,验证索引是否存在 boolean isExist = restHighLevelClient.indices().exists(request, RequestOptions.DEFAULT); log.info("是否存在:{}", isExist); // 根据具体业务逻辑返回不同结果,这里为了方便直接将结果返回 result = isExist; } catch (IOException e) { log.error("", e); } return result; } /** * 创建索引 */ public Object createIndex(String indexName) { Object result = ""; try { // 创建 Mapping XContentBuilder mapping = XContentFactory.jsonBuilder() .startObject() .field("dynamic", true) .startObject("properties") .startObject("name") .field("type","text") .startObject("fields") .startObject("keyword") .field("type","keyword") .endObject() .endObject() .endObject() .startObject("address") .field("type","text") .startObject("fields") .startObject("keyword") .field("type","keyword") .endObject() .endObject() .endObject() .startObject("remark") .field("type","text") .startObject("fields") .startObject("keyword") .field("type","keyword") .endObject() .endObject() .endObject() .startObject("age") .field("type","integer") .endObject() .startObject("salary") .field("type","float") .endObject() .startObject("birthDate") .field("type","date") .field("format", "yyyy-MM-dd") .endObject() .startObject("createTime") .field("type","date") .endObject() .endObject() .endObject(); // 创建索引配置信息,配置 Settings settings = Settings.builder() .put("index.number_of_shards", 1) .put("index.number_of_replicas", 0) .build(); // 新建创建索引请求对象,然后设置索引类型(ES 7.0 将不存在索引类型)和 mapping 与 index 配置 CreateIndexRequest request = new CreateIndexRequest(indexName, settings); request.mapping("doc", mapping); // RestHighLevelClient 执行创建索引 CreateIndexResponse createIndexResponse = restHighLevelClient.indices().create(request, RequestOptions.DEFAULT); // 判断是否创建成功 boolean isCreated = createIndexResponse.isAcknowledged(); log.info("是否创建成功:{}", isCreated); // 根据具体业务逻辑返回不同结果,这里为了方便直接将结果返回 result = isCreated; } catch (IOException e) { log.error("", e); } return result; } /** * 删除索引 */ public Object deleteIndex(String indexName) { Object result = ""; try { // 新建删除索引请求对象 DeleteIndexRequest request = new DeleteIndexRequest(indexName); // 执行删除索引 AcknowledgedResponse acknowledgedResponse = restHighLevelClient.indices().delete(request, RequestOptions.DEFAULT); // 判断是否删除成功 boolean siDeleted = acknowledgedResponse.isAcknowledged(); log.info("是否删除成功:{}", siDeleted); // 根据具体业务逻辑返回不同结果,这里为了方便直接将结果返回 result = siDeleted; } catch (IOException e) { log.error("", e); } return result; } }
五、文档操作示例
1、Restful 操作示例
增加文档信息
在索引 mydlq-user 中增加一条文档信息。
POST http://localhost:9200/testindex/doc { "address": "北京市", "age": 29, "birthDate": "1990-01-10", "createTime": 1579530727699, "name": "张三", "remark": "来自北京市的张先生", "salary": 100 } //返回 { "_index": "testindex", "_type": "doc", "_id": "hZo5_4oBFE0BmNy_GMUN", //这个是插入生成的随机id "_version": 1, "result": "created", "_shards": { "total": 1, "successful": 1, "failed": 0 }, "_seq_no": 29, "_primary_term": 3 }
获取文档信息
获取 testindex的索引 id=hZo5_4oBFE0BmNy_GMUN 的文档信息。
GET http://localhost:9200/testindex/doc/hZo5_4oBFE0BmNy_GMUN //返回 { "_index": "testindex", "_type": "doc", "_id": "hZo5_4oBFE0BmNy_GMUN", "_version": 1, "_seq_no": 29, "_primary_term": 3, "found": true, "_source": { "address": "北京市", "age": 29, "birthDate": "1990-01-10", "createTime": 1579530727699, "name": "张三", "remark": "来自北京市的张先生", "salary": 100 } }
更新文档信息
更新之前创建的 id=hZo5_4oBFE0BmNy_GMUN 的文档信息。
PUT http://localhost:9200/testindex/doc/hZo5_4oBFE0BmNy_GMUN //请求 { "address": "北京市", "age": 29, "birthDate": "1990-01-10", "createTime": 1579530727699, "name": "张三(改名字)", "remark": "来自北京市的张先生", "salary": 100 }
删除文档信息
删除之前创建的 id=hZo5_4oBFE0BmNy_GMUN 的文档信息。
DELETE http://localhost:9200/testindex/doc/hZo5_4oBFE0BmNy_GMUN
2、Java 代码示例
package com.example.elasticsearch.demos.web.service.base; import com.alibaba.fastjson.JSON; import com.example.elasticsearch.demos.web.model.dto.DocDto; import com.example.elasticsearch.demos.web.model.entity.UserInfo; import lombok.extern.slf4j.Slf4j; import org.elasticsearch.action.delete.DeleteRequest; import org.elasticsearch.action.delete.DeleteResponse; import org.elasticsearch.action.get.GetRequest; import org.elasticsearch.action.get.GetResponse; import org.elasticsearch.action.index.IndexRequest; import org.elasticsearch.action.index.IndexResponse; import org.elasticsearch.action.update.UpdateRequest; import org.elasticsearch.action.update.UpdateResponse; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.common.xcontent.XContentType; import org.elasticsearch.search.fetch.subphase.FetchSourceContext; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; import java.io.IOException; import java.util.Date; /** * 文档操作 */ @Slf4j @Service public class DocumentService { @Autowired private RestHighLevelClient restHighLevelClient; public Object existsDocument(DocDto docDto) { Object result = ""; try { // 获取请求对象 GetRequest getRequest = new GetRequest(docDto.getIndexName(), docDto.getDocId()); // 是否获取源码内容 getRequest.fetchSourceContext(new FetchSourceContext(false)); // 执行请求,验证文档是否存在 boolean isExist = restHighLevelClient.exists(getRequest, RequestOptions.DEFAULT); log.info("文档是否存在:{}", isExist); // 根据具体业务逻辑返回不同结果,这里为了方便直接将结果返回 result = isExist; } catch (IOException e) { log.error("", e); } return result; } public Object getDocument(DocDto docDto) { Object result = ""; try { // 获取请求对象 GetRequest getRequest = new GetRequest(docDto.getIndexName(), docDto.getDocId()); // 获取文档信息 GetResponse getResponse = restHighLevelClient.get(getRequest, RequestOptions.DEFAULT); // 将 JSON 转换成对象 if (getResponse.isExists()) { UserInfo userInfo = JSON.parseObject(getResponse.getSourceAsBytes(), UserInfo.class); log.info("用户信息:{}", userInfo); } // 根据具体业务逻辑返回不同结果,这里为了方便直接将结果返回 result = getResponse; } catch (IOException e) { log.error("", e); } return result; } public Object addDocument(DocDto docDto) { Object result = ""; try { // 创建索引请求对象 IndexRequest indexRequest = new IndexRequest(docDto.getIndexName()); // 创建用户信息 UserInfo userInfo = new UserInfo(); userInfo.setName(docDto.getName()); userInfo.setAge(docDto.getAge()); userInfo.setSalary(docDto.getSalary()); userInfo.setAddress(docDto.getAddress()); userInfo.setRemark(docDto.getRemark()); userInfo.setCreateTime(new Date()); userInfo.setBirthDate(docDto.getBirthDate()); // 将对象转换为 byte 数组 byte[] json = JSON.toJSONBytes(userInfo); // 设置文档内容 indexRequest.source(json, XContentType.JSON); // 执行增加文档 IndexResponse response = restHighLevelClient.index(indexRequest, RequestOptions.DEFAULT); log.info("创建状态:{}", response.status()); // 根据具体业务逻辑返回不同结果,这里为了方便直接将结果返回 result = response; } catch (Exception e) { log.error("", e); } return result; } public Object updateDocument(DocDto docDto) { Object result = ""; try { // 创建索引请求对象 UpdateRequest updateRequest = new UpdateRequest(docDto.getIndexName(), docDto.getDocId()); // UpdateRequest updateRequest = new UpdateRequest(docDto.getIndexName(), "doc", docDto.getDocId()); // 设置用户更新信息 UserInfo userInfo = new UserInfo(); userInfo.setSalary(docDto.getSalary()); userInfo.setAddress(docDto.getAddress()); // 将对象转换为 byte 数组 byte[] json = JSON.toJSONBytes(userInfo); // 设置更新文档内容 updateRequest.doc(json, XContentType.JSON); // 执行更新文档 UpdateResponse response = restHighLevelClient.update(updateRequest, RequestOptions.DEFAULT); log.info("创建状态:{}", response.status()); // 根据具体业务逻辑返回不同结果,这里为了方便直接将结果返回 result = response; } catch (Exception e) { log.error("", e); } return result; } public Object deleteDocument(DocDto docDto) { Object result = ""; try { // 创建删除请求对象 DeleteRequest deleteRequest = new DeleteRequest(docDto.getIndexName(), docDto.getDocId()); // 执行删除文档 DeleteResponse response = restHighLevelClient.delete(deleteRequest, RequestOptions.DEFAULT); log.info("删除状态:{}", response.status()); // 根据具体业务逻辑返回不同结果,这里为了方便直接将结果返回 result = response; } catch (IOException e) { log.error("", e); } return result; } }
六、插入初始化数据
执行查询示例前,先往索引中插入一批数据:
1、单条插入
POST http://localhost:9200/testindex/doc //请求 { "name": "零零", "address": "北京市丰台区", "remark": "低层员工", "age": 29, "salary": 3000, "birthDate": "1990-11-11", "createTime": "2019-11-11T08:18:00.000Z" }
2、批量插入
POST http://localhost:9200/_bulk //header Content-Type: application/json //body {"index":{"_index":"testindex","_type":"doc"}} {"name":"刘一","address":"北京市丰台区","remark":"低层员工","age":30,"salary":3000,"birthDate":"1989-11-11","createTime":"2019-03-15T08:18:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"陈二","address":"北京市昌平区","remark":"中层员工","age":27,"salary":7900,"birthDate":"1992-01-25","createTime":"2019-11-08T11:15:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"张三","address":"北京市房山区","remark":"中层员工","age":28,"salary":8800,"birthDate":"1991-10-05","createTime":"2019-07-22T13:22:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"李四","address":"北京市大兴区","remark":"高层员工","age":26,"salary":9000,"birthDate":"1993-08-18","createTime":"2019-10-17T15:00:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"王五","address":"北京市密云区","remark":"低层员工","age":31,"salary":4800,"birthDate":"1988-07-20","createTime":"2019-05-29T09:00:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"赵六","address":"北京市通州区","remark":"中层员工","age":32,"salary":6500,"birthDate":"1987-06-02","createTime":"2019-12-10T18:00:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"孙七","address":"北京市朝阳区","remark":"中层员工","age":33,"salary":7000,"birthDate":"1986-04-15","createTime":"2019-06-06T13:00:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"周八","address":"北京市西城区","remark":"低层员工","age":32,"salary":5000,"birthDate":"1987-09-26","createTime":"2019-01-26T14:00:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"吴九","address":"北京市海淀区","remark":"高层员工","age":30,"salary":11000,"birthDate":"1989-11-25","createTime":"2019-09-07T13:34:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"郑十","address":"北京市东城区","remark":"低层员工","age":29,"salary":5000,"birthDate":"1990-12-25","createTime":"2019-03-06T12:08:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"萧十一","address":"北京市平谷区","remark":"低层员工","age":29,"salary":3300,"birthDate":"1990-11-11","createTime":"2019-03-10T08:17:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"曹十二","address":"北京市怀柔区","remark":"中层员工","age":27,"salary":6800,"birthDate":"1992-01-25","createTime":"2019-12-03T11:09:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"吴十三","address":"北京市延庆区","remark":"中层员工","age":25,"salary":7000,"birthDate":"1994-10-05","createTime":"2019-07-27T14:22:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"冯十四","address":"北京市密云区","remark":"低层员工","age":25,"salary":3000,"birthDate":"1994-08-18","createTime":"2019-04-22T15:00:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"蒋十五","address":"北京市通州区","remark":"低层员工","age":31,"salary":2800,"birthDate":"1988-07-20","createTime":"2019-06-13T10:00:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"苗十六","address":"北京市门头沟区","remark":"高层员工","age":32,"salary":11500,"birthDate":"1987-06-02","createTime":"2019-11-11T18:00:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"鲁十七","address":"北京市石景山区","remark":"高员工","age":33,"salary":9500,"birthDate":"1986-04-15","createTime":"2019-06-06T14:00:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"沈十八","address":"北京市朝阳区","remark":"中层员工","age":31,"salary":8300,"birthDate":"1988-09-26","createTime":"2019-09-25T14:00:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"吕十九","address":"北京市西城区","remark":"低层员工","age":31,"salary":4500,"birthDate":"1988-11-25","createTime":"2019-09-22T13:34:00.000Z"} {"index":{"_index":"testindex","_type":"doc"}} {"name":"丁二十","address":"北京市东城区","remark":"低层员工","age":33,"salary":2100,"birthDate":"1986-12-25","createTime":"2019-03-07T12:08:00.000Z"}
3、查询数据
插入完成后再查询数据,查看之前插入的数据是否存在:
GET http://localhost:9200/testindex/_search //返回 { "took": 6, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": { "value": 2, "relation": "eq" }, "max_score": 2.302585, "hits": [ { "_index": "testindex", "_type": "doc", "_id": "3iDh-IoByPOFA_QWinlo", "_score": 2.302585, "_source": { "name": "赵六", "address": "北京市通州区", "remark": "中层员工", "age": 32, "salary": 6500, "birthDate": "1987-06-02", "createTime": "2019-12-10T18:00:00.000Z" } }, { "_index": "testindex", "_type": "doc", "_id": "5yDh-IoByPOFA_QWinlo", "_score": 2.302585, "_source": { "name": "蒋十五", "address": "北京市通州区", "remark": "低层员工", "age": 31, "salary": 2800, "birthDate": "1988-07-20", "createTime": "2019-06-13T10:00:00.000Z" } } ... ] } }
七、查询操作示例
1、精确查询(term)
(1)、Restful 操作示例
精确查询
精确查询,查询地址为 北京市通州区 的人员信息:
查询条件不会进行分词,但是查询内容可能会分词,导致查询不到。之前在创建索引时设置 Mapping 中 address 字段存在 keyword 字段是专门用于不分词查询的子字段。
GET http://localhost:9200/testindex/_search //请求 { "query": { "term": { "address.keyword": { "value": "北京市通州区" } } } } //返回 { "took": 6, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": { "value": 2, "relation": "eq" }, "max_score": 2.302585, "hits": [ { "_index": "testindex", "_type": "doc", "_id": "3iDh-IoByPOFA_QWinlo", "_score": 2.302585, "_source": { "name": "赵六", "address": "北京市通州区", "remark": "中层员工", "age": 32, "salary": 6500, "birthDate": "1987-06-02", "createTime": "2019-12-10T18:00:00.000Z" } }, { "_index": "testindex", "_type": "doc", "_id": "5yDh-IoByPOFA_QWinlo", "_score": 2.302585, "_source": { "name": "蒋十五", "address": "北京市通州区", "remark": "低层员工", "age": 31, "salary": 2800, "birthDate": "1988-07-20", "createTime": "2019-06-13T10:00:00.000Z" } } ... ] } }
精确查询-多内容查询
精确查询,查询地址为 北京市丰台区、北京市昌平区 或 北京市大兴区 的人员信息:
GET http://localhost:9200/testindex/_search //请求 { "query": { "terms": { "address.keyword": [ "北京市丰台区", "北京市昌平区", "北京市大兴区" ] } } }
(2)、Java 代码示例
package com.example.elasticsearch.demos.web.service.query; import com.alibaba.fastjson.JSON; import com.example.elasticsearch.demos.web.model.dto.TermsQueryDto; import com.example.elasticsearch.demos.web.model.entity.UserInfo; import lombok.extern.slf4j.Slf4j; import org.elasticsearch.action.search.SearchRequest; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.index.query.QueryBuilders; import org.elasticsearch.rest.RestStatus; import org.elasticsearch.search.SearchHit; import org.elasticsearch.search.SearchHits; import org.elasticsearch.search.builder.SearchSourceBuilder; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; import java.io.IOException; import java.util.Arrays; /** * 精确查询 */ @Slf4j @Service public class TermQueryService { @Autowired private RestHighLevelClient restHighLevelClient; /** * 精确查询(查询条件不会进行分词,但是查询内容可能会分词,导致查询不到) * @param queryDto */ public Object termQuery(TermsQueryDto queryDto) { Object result = ""; try { // 构建查询条件(注意:termQuery 支持多种格式查询,如 boolean、int、double、string 等,这里使用的是 string 的查询) SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(QueryBuilders.termQuery(queryDto.getKey() + ".keyword", queryDto.getValue())); // 创建查询请求对象,将查询对象配置到其中 SearchRequest searchRequest = new SearchRequest(queryDto.getIndexName()); searchRequest.source(searchSourceBuilder); // 执行查询,然后处理响应结果 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 根据状态和数据条数验证是否返回了数据 if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) { SearchHits hits = searchResponse.getHits(); for (SearchHit hit : hits) { // 将 JSON 转换成对象 UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class); // 输出查询信息 log.info(userInfo.toString()); } } result = searchResponse.getHits(); } catch (IOException e) { log.error("", e); } return result; } /** * 多个内容在一个字段中进行查询 * @param queryDto */ public Object termsQuery(TermsQueryDto queryDto) { Object result = ""; try { // 构建查询条件(注意:termsQuery 支持多种格式查询,如 boolean、int、double、string 等,这里使用的是 string 的查询) SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(QueryBuilders.termsQuery(queryDto.getKey() + ".keyword", queryDto.getValues())); // 创建查询请求对象,将查询对象配置到其中 SearchRequest searchRequest = new SearchRequest(queryDto.getIndexName()); searchRequest.source(searchSourceBuilder); // 执行查询,然后处理响应结果 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 根据状态和数据条数验证是否返回了数据 if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) { SearchHits hits = searchResponse.getHits(); for (SearchHit hit : hits) { // 将 JSON 转换成对象 UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class); // 输出查询信息 log.info(userInfo.toString()); } } result = searchResponse.getHits(); } catch (IOException e) { log.error("", e); } return result; } }
2、匹配查询(match)
(1)、Restful 操作示例
匹配查询全部数据与分页
匹配查询符合条件的所有数据,并且设置以 salary 字段升序排序,并设置分页:
GET http://localhost:9200/testindex/_search //请求 { "query": { "match_all": {} }, "from": 0, "size": 10, "sort": [ { "salary": { "order": "asc" } } ] }
匹配查询数据
匹配查询地址为 通州区 的数据:
GET http://localhost:9200/testindex/_search //请求 { "query": { "match": { "address": "通州区" } } }
词语匹配查询
词语匹配进行查询,匹配 address 中为 北京市通州区 的员工信息:
GET http://localhost:9200/testindex/_search //请求 { "query": { "match_phrase": { "address": "北京市通州区" } } }
内容多字段查询
查询在字段 address、remark 中存在 北京 内容的员工信息:
GET http://localhost:9200/testindex/_search //请求 { "query": { "multi_match": { "query": "北京", "fields": ["address","remark"] } } }
(2)、Java 代码示例
package com.example.elasticsearch.demos.web.service.query; import com.alibaba.fastjson.JSON; import com.example.elasticsearch.demos.web.model.dto.MatchQueryDto; import com.example.elasticsearch.demos.web.model.entity.UserInfo; import lombok.extern.slf4j.Slf4j; import org.elasticsearch.action.search.SearchRequest; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.index.query.MatchAllQueryBuilder; import org.elasticsearch.index.query.QueryBuilders; import org.elasticsearch.rest.RestStatus; import org.elasticsearch.search.SearchHit; import org.elasticsearch.search.SearchHits; import org.elasticsearch.search.builder.SearchSourceBuilder; import org.elasticsearch.search.sort.SortOrder; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; import java.io.IOException; /** * 匹配查询 */ @Slf4j @Service public class MatchQueryService { @Autowired private RestHighLevelClient restHighLevelClient; /** * 匹配查询符合条件的所有数据,并设置分页 * @param queryDto */ public Object matchAllQuery(MatchQueryDto queryDto) { Object result = ""; try { // 构建查询条件 MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery(); // 创建查询源构造器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(matchAllQueryBuilder); // 设置分页 searchSourceBuilder.from((queryDto.getRows() - 1) * queryDto.getSize()); searchSourceBuilder.size(queryDto.getSize()); // 设置排序 searchSourceBuilder.sort("salary", SortOrder.ASC); // 创建查询请求对象,将查询对象配置到其中 SearchRequest searchRequest = new SearchRequest(queryDto.getIndexName()); searchRequest.source(searchSourceBuilder); // 执行查询,然后处理响应结果 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 根据状态和数据条数验证是否返回了数据 if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) { SearchHits hits = searchResponse.getHits(); for (SearchHit hit : hits) { // 将 JSON 转换成对象 UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class); // 输出查询信息 log.info(userInfo.toString()); } } result = searchResponse.getHits(); } catch (IOException e) { log.error("", e); } return result; } /** * 匹配查询数据-or的方式 * @param queryDto */ public Object matchQuery(MatchQueryDto queryDto) { Object result = ""; try { // 构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(QueryBuilders.matchQuery(queryDto.getKey(), queryDto.getValue())); // searchSourceBuilder.query(QueryBuilders.matchQuery("address", "通州区")); // 创建查询请求对象,将查询对象配置到其中 SearchRequest searchRequest = new SearchRequest(queryDto.getIndexName()); searchRequest.source(searchSourceBuilder); // 执行查询,然后处理响应结果 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 根据状态和数据条数验证是否返回了数据 if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) { SearchHits hits = searchResponse.getHits(); for (SearchHit hit : hits) { // 将 JSON 转换成对象 UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class); // 输出查询信息 log.info(userInfo.toString()); } } result = searchResponse.getHits(); } catch (IOException e) { log.error("", e); } return result; } /** * 词语匹配查询 * @param queryDto */ public Object matchPhraseQuery(MatchQueryDto queryDto) { Object result = ""; try { // 构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(QueryBuilders.matchPhraseQuery(queryDto.getKey(), queryDto.getValue())); // searchSourceBuilder.query(QueryBuilders.matchPhraseQuery("address", "北京市通州区")); // 创建查询请求对象,将查询对象配置到其中 SearchRequest searchRequest = new SearchRequest(queryDto.getIndexName()); searchRequest.source(searchSourceBuilder); // 执行查询,然后处理响应结果 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 根据状态和数据条数验证是否返回了数据 if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) { SearchHits hits = searchResponse.getHits(); for (SearchHit hit : hits) { // 将 JSON 转换成对象 UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class); // 输出查询信息 log.info(userInfo.toString()); } } result = searchResponse.getHits(); } catch (IOException e) { log.error("", e); } return result; } /** * 内容在多字段中进行查询 * @param queryDto */ public Object matchMultiQuery(MatchQueryDto queryDto) { Object result = ""; try { // 构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(QueryBuilders.multiMatchQuery(queryDto.getKey(), queryDto.getValues())); // searchSourceBuilder.query(QueryBuilders.multiMatchQuery("北京市", "address", "remark")); // 创建查询请求对象,将查询对象配置到其中 SearchRequest searchRequest = new SearchRequest(queryDto.getIndexName()); searchRequest.source(searchSourceBuilder); // 执行查询,然后处理响应结果 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 根据状态和数据条数验证是否返回了数据 if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) { SearchHits hits = searchResponse.getHits(); for (SearchHit hit : hits) { // 将 JSON 转换成对象 UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class); // 输出查询信息 log.info(userInfo.toString()); } } result = searchResponse.getHits(); } catch (IOException e) { log.error("", e); } return result; } }
3、模糊查询(fuzzy)
(1)、Restful 操作示例
模糊查询所有以 三 结尾的姓名
GET http://localhost:9200/testindex/_search //请求 { "query": { "fuzzy": { "name": "三" } } }
(2)、Java 代码示例
package com.example.elasticsearch.demos.web.service.query; import com.alibaba.fastjson.JSON; import com.example.elasticsearch.demos.web.model.dto.MatchQueryDto; import com.example.elasticsearch.demos.web.model.entity.UserInfo; import lombok.extern.slf4j.Slf4j; import org.elasticsearch.action.search.SearchRequest; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.common.unit.Fuzziness; import org.elasticsearch.index.query.QueryBuilders; import org.elasticsearch.rest.RestStatus; import org.elasticsearch.search.SearchHit; import org.elasticsearch.search.SearchHits; import org.elasticsearch.search.builder.SearchSourceBuilder; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; import java.io.IOException; /** * 模糊查询 */ @Slf4j @Service public class FuzzyQueryService { @Autowired private RestHighLevelClient restHighLevelClient; /** * 模糊查询所有以 “三” 结尾的姓名 * @param queryDto */ public Object fuzzyQuery(MatchQueryDto queryDto) { Object result = ""; try { // 构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(QueryBuilders.fuzzyQuery(queryDto.getKey(), queryDto.getValue()).fuzziness(Fuzziness.AUTO)); // 创建查询请求对象,将查询对象配置到其中 SearchRequest searchRequest = new SearchRequest(queryDto.getIndexName()); searchRequest.source(searchSourceBuilder); // 执行查询,然后处理响应结果 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 根据状态和数据条数验证是否返回了数据 if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) { SearchHits hits = searchResponse.getHits(); for (SearchHit hit : hits) { // 将 JSON 转换成对象 UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class); // 输出查询信息 log.info(userInfo.toString()); } } result = searchResponse.getHits(); } catch (IOException e) { log.error("", e); } return result; } }
4、范围查询(range)
(1)、Restful 操作示例
查询岁数 ≥ 30 岁的员工数据:
GET http://localhost:9200/testindex/_search //请求 { "query": { "range": { "age": { "gte": 30 } } } }
查询生日距离现在 30 年间的员工数据:
GET http://localhost:9200/testindex/_search //请求 { "query": { "range": { "birthDate": { "gte": "now-30y" } } } }
(2)、Java 代码示例
package com.example.elasticsearch.demos.web.service.query; import com.alibaba.fastjson.JSON; import com.example.elasticsearch.demos.web.model.dto.MatchQueryDto; import com.example.elasticsearch.demos.web.model.entity.UserInfo; import lombok.extern.slf4j.Slf4j; import org.elasticsearch.action.search.SearchRequest; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.index.query.QueryBuilders; import org.elasticsearch.rest.RestStatus; import org.elasticsearch.search.SearchHit; import org.elasticsearch.search.SearchHits; import org.elasticsearch.search.builder.SearchSourceBuilder; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; import java.io.IOException; /** * 范围查询 */ @Slf4j @Service public class RangeQueryService { @Autowired private RestHighLevelClient restHighLevelClient; /** * 查询岁数 ≥ 30 岁的员工数据 * @param queryDto */ public Object rangeQuery(MatchQueryDto queryDto) { Object result = ""; try { // 构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(QueryBuilders.rangeQuery("age").gte(30)); // 创建查询请求对象,将查询对象配置到其中 SearchRequest searchRequest = new SearchRequest(queryDto.getIndexName()); searchRequest.source(searchSourceBuilder); // 执行查询,然后处理响应结果 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 根据状态和数据条数验证是否返回了数据 if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) { SearchHits hits = searchResponse.getHits(); for (SearchHit hit : hits) { // 将 JSON 转换成对象 UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class); // 输出查询信息 log.info(userInfo.toString()); } } result = searchResponse.getHits(); } catch (IOException e) { log.error("", e); } return result; } /** * 查询距离现在 30 年间的员工数据 * [年(y)、月(M)、星期(w)、天(d)、小时(h)、分钟(m)、秒(s)] * 例如: * now-1h 查询一小时内范围 * now-1d 查询一天内时间范围 * now-1y 查询最近一年内的时间范围 * @param queryDto */ public Object dateRangeQuery(MatchQueryDto queryDto) { Object result = ""; try { // 构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // // includeLower(是否包含下边界)、includeUpper(是否包含上边界) // searchSourceBuilder.query(QueryBuilders.rangeQuery("birthDate") // .gte("now-30y").includeLower(true).includeUpper(true)); searchSourceBuilder.query(QueryBuilders.rangeQuery("birthDate").gte(queryDto.getFrom()).lte(queryDto.getEnd())); // 创建查询请求对象,将查询对象配置到其中 SearchRequest searchRequest = new SearchRequest(queryDto.getIndexName()); searchRequest.source(searchSourceBuilder); // 执行查询,然后处理响应结果 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 根据状态和数据条数验证是否返回了数据 if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) { SearchHits hits = searchResponse.getHits(); for (SearchHit hit : hits) { // 将 JSON 转换成对象 UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class); // 输出查询信息 log.info(userInfo.toString()); } } result = searchResponse.getHits(); } catch (IOException e) { log.error("", e); } return result; } }
5、通配符查询(wildcard)
(1)、Restful 操作示例
查询所有以 “三” 结尾的姓名:
GET http://localhost:9200/testindex/_search //请求 { "query": { "wildcard": { "name.keyword": { "value": "*三" } } } }
(2)、Java 代码示例
package com.example.elasticsearch.demos.web.service.query; import com.alibaba.fastjson.JSON; import com.example.elasticsearch.demos.web.model.dto.MatchQueryDto; import com.example.elasticsearch.demos.web.model.entity.UserInfo; import lombok.extern.slf4j.Slf4j; import org.elasticsearch.action.search.SearchRequest; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.index.query.QueryBuilders; import org.elasticsearch.rest.RestStatus; import org.elasticsearch.search.SearchHit; import org.elasticsearch.search.SearchHits; import org.elasticsearch.search.builder.SearchSourceBuilder; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; import java.io.IOException; /** * 通配符查询 */ @Slf4j @Service public class WildcardQueryService { @Autowired private RestHighLevelClient restHighLevelClient; /** * 查询所有以 “三” 结尾的姓名 *
* *:表示多个字符(0个或多个字符) * ?:表示单个字符 * @param queryDto */ public Object wildcardQuery(MatchQueryDto queryDto) { Object result = ""; try { // 构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(QueryBuilders.wildcardQuery(queryDto.getKey() + ".keyword", "*" + queryDto.getValue())); // 创建查询请求对象,将查询对象配置到其中 SearchRequest searchRequest = new SearchRequest(queryDto.getIndexName()); searchRequest.source(searchSourceBuilder); // 执行查询,然后处理响应结果 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 根据状态和数据条数验证是否返回了数据 if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) { SearchHits hits = searchResponse.getHits(); for (SearchHit hit : hits) { // 将 JSON 转换成对象 UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class); // 输出查询信息 log.info(userInfo.toString()); } } result = searchResponse.getHits(); } catch (IOException e) { log.error("", e); } return result; } }
6、布尔查询(bool)
(1)、Restful 操作示例
查询出生在 1990-1995 年期间,且地址在 北京市昌平区、北京市大兴区、北京市房山区 的员工信息:
GET http://localhost:9200/testindex/_search //请求 { "query": { "bool": { "filter": { "range": { "birthDate": { "format": "yyyy", "gte": 1990, "lte": 1995 } } }, "must": [ { "terms": { "address.keyword": [ "北京市昌平区", "北京市大兴区", "北京市房山区" ] } } ] } } }
(2)、Java 代码示例
package com.example.elasticsearch.demos.web.service.query; import com.alibaba.fastjson.JSON; import com.example.elasticsearch.demos.web.model.dto.MatchQueryDto; import com.example.elasticsearch.demos.web.model.entity.UserInfo; import lombok.extern.slf4j.Slf4j; import org.elasticsearch.action.search.SearchRequest; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.index.query.BoolQueryBuilder; import org.elasticsearch.index.query.QueryBuilders; import org.elasticsearch.rest.RestStatus; import org.elasticsearch.search.SearchHit; import org.elasticsearch.search.SearchHits; import org.elasticsearch.search.builder.SearchSourceBuilder; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; import java.io.IOException; /** * 布尔查询 */ @Slf4j @Service public class BoolQueryService { @Autowired private RestHighLevelClient restHighLevelClient; /** * 布尔查询 * @param queryDto */ public Object boolQuery(MatchQueryDto queryDto) { Object result = ""; try { // 创建 Bool 查询构建器 BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); // 构建查询条件 boolQueryBuilder.must(QueryBuilders.termsQuery("address.keyword", "北京市昌平区", "北京市大兴区", "北京市房山区")) .filter().add(QueryBuilders.rangeQuery("birthDate").format("yyyy").gte("1990").lte("1995")); // 构建查询源构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(boolQueryBuilder); // 创建查询请求对象,将查询对象配置到其中 SearchRequest searchRequest = new SearchRequest(queryDto.getIndexName()); searchRequest.source(searchSourceBuilder); // 执行查询,然后处理响应结果 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 根据状态和数据条数验证是否返回了数据 if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) { SearchHits hits = searchResponse.getHits(); for (SearchHit hit : hits) { // 将 JSON 转换成对象 UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class); // 输出查询信息 log.info(userInfo.toString()); } } result = searchResponse.getHits(); } catch (IOException e) { log.error("", e); } return result; } }
八、聚合查询操作示例
1、Metric 聚合分析
(1)、Restful 操作示例
GET http://localhost:9200/testindex/_search 1、统计员工总数、工资最高值、工资最低值、工资平均工资、工资总和: //请求 { "size": 0, "aggs": { "salary_stats": { "stats": { "field": "salary" } } } } 2、统计员工工资最低值: //请求 { "size": 0, "aggs": { "salary_min": { "min": { "field": "salary" } } } } 3、统计员工工资最高值: //请求 { "size": 0, "aggs": { "salary_max": { "max": { "field": "salary" } } } } 4、统计员工工资平均值: //请求 { "size": 0, "aggs": { "salary_avg": { "avg": { "field": "salary" } } } } 5、统计员工工资总值: //请求 { "size": 0, "aggs": { "salary_sum": { "sum": { "field": "salary" } } } } 6、统计员工总数: //请求 { "size": 0, "aggs": { "employee_count": { "value_count": { "field": "salary" } } } } 7、统计员工工资百分位: //请求 { "size": 0, "aggs": { "salary_percentiles": { "percentiles": { "field": "salary" } } } }
(2)、Java 代码示例
package com.example.elasticsearch.demos.web.service.aggregation; import com.example.elasticsearch.demos.web.model.dto.MatchQueryDto; import lombok.extern.slf4j.Slf4j; import org.elasticsearch.action.search.SearchRequest; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.rest.RestStatus; import org.elasticsearch.search.aggregations.AggregationBuilder; import org.elasticsearch.search.aggregations.AggregationBuilders; import org.elasticsearch.search.aggregations.Aggregations; import org.elasticsearch.search.aggregations.metrics.*; import org.elasticsearch.search.builder.SearchSourceBuilder; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.beans.factory.annotation.Value; import org.springframework.stereotype.Component; import org.springframework.stereotype.Service; import java.io.IOException; /** * 聚合 Metric */ @Slf4j @Service public class AggrMetricService { @Autowired private RestHighLevelClient restHighLevelClient; @Value("${myindex}") private String indexName; /** * stats 统计员工总数、工资最高值、工资最低值、工资平均工资、工资总和 * @param queryDto */ public Object aggregationStats(MatchQueryDto queryDto) { String responseResult = ""; try { // 设置聚合条件 String field = queryDto.getKey(); AggregationBuilder aggr = AggregationBuilders.stats(field + "_stats").field(field); // 查询源构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.aggregation(aggr); // 设置查询结果不返回,只返回聚合结果 searchSourceBuilder.size(0); // 创建查询请求对象,将查询条件配置到其中 SearchRequest request = new SearchRequest(indexName); request.source(searchSourceBuilder); // 执行请求 SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT); // 获取响应中的聚合信息 Aggregations aggregations = response.getAggregations(); // 输出内容 if (RestStatus.OK.equals(response.status()) || aggregations != null) { // 转换为 Stats 对象 ParsedStats aggregation = aggregations.get(field + "_stats"); log.info("-------------------------------------------"); log.info("聚合信息: {}", field); log.info("count:{}", aggregation.getCount()); log.info("avg:{}", aggregation.getAvg()); log.info("max:{}", aggregation.getMax()); log.info("min:{}", aggregation.getMin()); log.info("sum:{}", aggregation.getSum()); log.info("-------------------------------------------"); } // 根据具体业务逻辑返回不同结果,这里为了方便直接将返回响应对象Json串 responseResult = response.toString(); } catch (IOException e) { log.error("", e); } return responseResult; } /** * min 统计员工工资最低值 */ public Object aggregationMin() { String responseResult = ""; try { // 设置聚合条件 AggregationBuilder aggr = AggregationBuilders.min("salary_min").field("salary"); // 查询源构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.aggregation(aggr); searchSourceBuilder.size(0); // 创建查询请求对象,将查询条件配置到其中 SearchRequest request = new SearchRequest(indexName); request.source(searchSourceBuilder); // 执行请求 SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT); // 获取响应中的聚合信息 Aggregations aggregations = response.getAggregations(); // 输出内容 if (RestStatus.OK.equals(response.status()) || aggregations != null) { // 转换为 Min 对象 ParsedMin aggregation = aggregations.get("salary_min"); log.info("-------------------------------------------"); log.info("聚合信息:"); log.info("min:{}", aggregation.getValue()); log.info("-------------------------------------------"); } // 根据具体业务逻辑返回不同结果,这里为了方便直接将返回响应对象Json串 responseResult = response.toString(); } catch (IOException e) { log.error("", e); } return responseResult; } /** * max 统计员工工资最高值 */ public Object aggregationMax() { String responseResult = ""; try { // 设置聚合条件 AggregationBuilder aggr = AggregationBuilders.max("salary_max").field("salary"); // 查询源构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.aggregation(aggr); searchSourceBuilder.size(0); // 创建查询请求对象,将查询条件配置到其中 SearchRequest request = new SearchRequest(indexName); request.source(searchSourceBuilder); // 执行请求 SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT); // 获取响应中的聚合信息 Aggregations aggregations = response.getAggregations(); // 输出内容 if (RestStatus.OK.equals(response.status()) || aggregations != null) { // 转换为 Max 对象 ParsedMax aggregation = aggregations.get("salary_max"); log.info("-------------------------------------------"); log.info("聚合信息:"); log.info("max:{}", aggregation.getValue()); log.info("-------------------------------------------"); } // 根据具体业务逻辑返回不同结果,这里为了方便直接将返回响应对象Json串 responseResult = response.toString(); } catch (IOException e) { log.error("", e); } return responseResult; } /** * avg 统计员工工资平均值 */ public Object aggregationAvg() { String responseResult = ""; try { // 设置聚合条件 AggregationBuilder aggr = AggregationBuilders.avg("salary_avg").field("salary"); // 查询源构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.aggregation(aggr); searchSourceBuilder.size(0); // 创建查询请求对象,将查询条件配置到其中 SearchRequest request = new SearchRequest(indexName); request.source(searchSourceBuilder); // 执行请求 SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT); // 获取响应中的聚合信息 Aggregations aggregations = response.getAggregations(); // 输出内容 if (RestStatus.OK.equals(response.status()) || aggregations != null) { // 转换为 Avg 对象 ParsedAvg aggregation = aggregations.get("salary_avg"); log.info("-------------------------------------------"); log.info("聚合信息:"); log.info("avg:{}", aggregation.getValue()); log.info("-------------------------------------------"); } // 根据具体业务逻辑返回不同结果,这里为了方便直接将返回响应对象Json串 responseResult = response.toString(); } catch (IOException e) { log.error("", e); } return responseResult; } /** * sum 统计员工工资总值 */ public Object aggregationSum() { String responseResult = ""; try { // 设置聚合条件 SumAggregationBuilder aggr = AggregationBuilders.sum("salary_sum").field("salary"); // 查询源构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.aggregation(aggr); searchSourceBuilder.size(0); // 创建查询请求对象,将查询条件配置到其中 SearchRequest request = new SearchRequest(indexName); request.source(searchSourceBuilder); // 执行请求 SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT); // 获取响应中的聚合信息 Aggregations aggregations = response.getAggregations(); // 输出内容 if (RestStatus.OK.equals(response.status()) || aggregations != null) { // 转换为 Sum 对象 ParsedSum aggregation = aggregations.get("salary_sum"); log.info("-------------------------------------------"); log.info("聚合信息:"); log.info("sum:{}", String.valueOf((aggregation.getValue()))); log.info("-------------------------------------------"); } // 根据具体业务逻辑返回不同结果,这里为了方便直接将返回响应对象Json串 responseResult = response.toString(); } catch (IOException e) { log.error("", e); } return responseResult; } /** * count 统计员工总数 */ public Object aggregationCount() { String responseResult = ""; try { // 设置聚合条件 AggregationBuilder aggr = AggregationBuilders.count("employee_count").field("salary"); // 查询源构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.aggregation(aggr); searchSourceBuilder.size(0); // 创建查询请求对象,将查询条件配置到其中 SearchRequest request = new SearchRequest(indexName); request.source(searchSourceBuilder); // 执行请求 SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT); // 获取响应中的聚合信息 Aggregations aggregations = response.getAggregations(); // 输出内容 if (RestStatus.OK.equals(response.status()) || aggregations != null) { // 转换为 ValueCount 对象 ParsedValueCount aggregation = aggregations.get("employee_count"); log.info("-------------------------------------------"); log.info("聚合信息:"); log.info("count:{}", aggregation.getValue()); log.info("-------------------------------------------"); } // 根据具体业务逻辑返回不同结果,这里为了方便直接将返回响应对象Json串 responseResult = response.toString(); } catch (IOException e) { log.error("", e); } return responseResult; } /** * percentiles 统计员工工资百分位 */ public Object aggregationPercentiles() { String responseResult = ""; try { // 设置聚合条件 AggregationBuilder aggr = AggregationBuilders.percentiles("salary_percentiles").field("salary"); // 查询源构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.aggregation(aggr); searchSourceBuilder.size(0); // 创建查询请求对象,将查询条件配置到其中 SearchRequest request = new SearchRequest(indexName); request.source(searchSourceBuilder); // 执行请求 SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT); // 获取响应中的聚合信息 Aggregations aggregations = response.getAggregations(); // 输出内容 if (RestStatus.OK.equals(response.status()) || aggregations != null) { // 转换为 Percentiles 对象 ParsedPercentiles aggregation = aggregations.get("salary_percentiles"); log.info("-------------------------------------------"); log.info("聚合信息:"); for (Percentile percentile : aggregation) { log.info("百分位:{}:{}", percentile.getPercent(), percentile.getValue()); } log.info("-------------------------------------------"); } // 根据具体业务逻辑返回不同结果,这里为了方便直接将返回响应对象Json串 responseResult = response.toString(); } catch (IOException e) { log.error("", e); } return responseResult; } }
2、Bucket 聚合分析
(1)、Restful 操作示例
GET http://localhost:9200/testindex/_search 1、按岁数进行聚合分桶,统计各个岁数员工的人数: //请求 { "size": 0, "aggs": { "age_bucket": { "terms": { "field": "age", "size": "10" } } } } 2、按工资范围进行聚合分桶,统计工资在 3000-5000、5000-9000 和 9000 以上的员工信息: //请求 { "aggs": { "salary_range_bucket": { "range": { "field": "salary", "ranges": [ { "key": "低级员工", "to": 3000 },{ "key": "中级员工", "from": 5000, "to": 9000 },{ "key": "高级员工", "from": 9000 } ] } } } } 3、按照时间范围进行分桶,统计 1985-1990 年和 1990-1995 年出生的员工信息: //请求 { "size": 10, "aggs": { "date_range_bucket": { "date_range": { "field": "birthDate", "format": "yyyy", "ranges": [ { "key": "出生日期1985-1990的员工", "from": "1985", "to": "1990" },{ "key": "出生日期1990-1995的员工", "from": "1990", "to": "1995" } ] } } } } 4、按工资多少进行聚合分桶,设置统计的最小值为 0,最大值为 12000,区段间隔为 3000: //请求 { "size": 0, "aggs": { "salary_histogram": { "histogram": { "field": "salary", "extended_bounds": { "min": 0, "max": 12000 }, "interval": 3000 } } } } 5、按出生日期进行分桶: //请求 { "size": 0, "aggs": { "birthday_histogram": { "date_histogram": { "format": "yyyy", "field": "birthDate", "interval": "year" } } } }
(2)、Java 代码示例
package com.example.elasticsearch.demos.web.service.aggregation; import lombok.extern.slf4j.Slf4j; import org.elasticsearch.action.search.SearchRequest; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.rest.RestStatus; import org.elasticsearch.search.aggregations.AggregationBuilder; import org.elasticsearch.search.aggregations.AggregationBuilders; import org.elasticsearch.search.aggregations.Aggregations; import org.elasticsearch.search.aggregations.bucket.histogram.DateHistogramInterval; import org.elasticsearch.search.aggregations.bucket.histogram.Histogram; import org.elasticsearch.search.aggregations.bucket.range.Range; import org.elasticsearch.search.aggregations.bucket.terms.Terms; import org.elasticsearch.search.builder.SearchSourceBuilder; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.beans.factory.annotation.Value; import org.springframework.stereotype.Service; import java.io.IOException; import java.util.HashMap; import java.util.List; import java.util.Map; /** * 聚合 Bucket */ @Slf4j @Service public class AggrBucketService { @Autowired private RestHighLevelClient restHighLevelClient; @Value("${myindex}") private String indexName; /** * 按岁数进行聚合分桶,统计各个岁数员工的人数: */ public Object aggrBucketTerms() { Map
keyCountMap = new HashMap<>(); try { AggregationBuilder aggr = AggregationBuilders.terms("age_bucket").field("age"); // 查询源构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.size(10); searchSourceBuilder.aggregation(aggr); // 创建查询请求对象,将查询条件配置到其中 SearchRequest request = new SearchRequest(indexName); request.source(searchSourceBuilder); // 执行请求 SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT); // 获取响应中的聚合信息 Aggregations aggregations = response.getAggregations(); // 输出内容 if (RestStatus.OK.equals(response.status())) { // 分桶 Terms byCompanyAggregation = aggregations.get("age_bucket"); List extends Terms.Bucket> buckets = byCompanyAggregation.getBuckets(); // 输出各个桶的内容 log.info("-------------------------------------------"); log.info("聚合信息:"); for (Terms.Bucket bucket : buckets) { keyCountMap.put(bucket.getKeyAsString(), bucket.getDocCount()); log.info("桶名:{} | 总数:{}", bucket.getKeyAsString(), bucket.getDocCount()); } log.info("-------------------------------------------"); } } catch (IOException e) { log.error("", e); } return keyCountMap; } /** * 按工资范围进行聚合分桶,统计工资在 3000-5000、5000-9000 和 9000 以上的员工信息: */ public Object aggrBucketRange() { Map keyCountMap = new HashMap<>(); try { AggregationBuilder aggr = AggregationBuilders.range("salary_range_bucket") .field("salary") .addUnboundedTo("低级员工", 3000) .addRange("中级员工", 5000, 9000) .addUnboundedFrom("高级员工", 9000); // 查询源构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.size(0); searchSourceBuilder.aggregation(aggr); // 创建查询请求对象,将查询条件配置到其中 SearchRequest request = new SearchRequest(indexName); request.source(searchSourceBuilder); // 执行请求 SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT); // 获取响应中的聚合信息 Aggregations aggregations = response.getAggregations(); // 输出内容 if (RestStatus.OK.equals(response.status())) { // 分桶 Range byCompanyAggregation = aggregations.get("salary_range_bucket"); List extends Range.Bucket> buckets = byCompanyAggregation.getBuckets(); // 输出各个桶的内容 log.info("-------------------------------------------"); log.info("聚合信息:"); for (Range.Bucket bucket : buckets) { keyCountMap.put(bucket.getKeyAsString(), bucket.getDocCount()); log.info("桶名:{} | 总数:{}", bucket.getKeyAsString(), bucket.getDocCount()); } log.info("-------------------------------------------"); } } catch (IOException e) { log.error("", e); } return keyCountMap; } /** * 按照时间范围进行分桶,统计 1985-1990 年和 1990-1995 年出生的员工信息: */ public Object aggrBucketDateRange() { Map keyCountMap = new HashMap<>(); try { AggregationBuilder aggr = AggregationBuilders.dateRange("date_range_bucket") .field("birthDate") .format("yyyy") .addRange("出生日期1985-1990的员工", "1985", "1990") .addRange("出生日期1990-1995的员工", "1990", "1995"); // 查询源构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.size(0); searchSourceBuilder.aggregation(aggr); // 创建查询请求对象,将查询条件配置到其中 SearchRequest request = new SearchRequest(indexName); request.source(searchSourceBuilder); // 执行请求 SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT); // 获取响应中的聚合信息 Aggregations aggregations = response.getAggregations(); // 输出内容 if (RestStatus.OK.equals(response.status())) { // 分桶 Range byCompanyAggregation = aggregations.get("date_range_bucket"); List extends Range.Bucket> buckets = byCompanyAggregation.getBuckets(); // 输出各个桶的内容 log.info("-------------------------------------------"); log.info("聚合信息:"); for (Range.Bucket bucket : buckets) { keyCountMap.put(bucket.getKeyAsString(), bucket.getDocCount()); log.info("桶名:{} | 总数:{}", bucket.getKeyAsString(), bucket.getDocCount()); } log.info("-------------------------------------------"); } } catch (IOException e) { log.error("", e); } return keyCountMap; } /** * 按工资多少进行聚合分桶 */ public Object aggrBucketHistogram() { Map keyCountMap = new HashMap<>(); try { //按工资多少进行聚合分桶,设置统计的最小值为 0,最大值为 12000,区段间隔为 3000: AggregationBuilder aggr = AggregationBuilders.histogram("salary_histogram") .field("salary") .extendedBounds(0, 12000) .interval(3000); // 查询源构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.size(0); searchSourceBuilder.aggregation(aggr); // 创建查询请求对象,将查询条件配置到其中 SearchRequest request = new SearchRequest(indexName); request.source(searchSourceBuilder); // 执行请求 SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT); // 获取响应中的聚合信息 Aggregations aggregations = response.getAggregations(); // 输出内容 if (RestStatus.OK.equals(response.status())) { // 分桶 Histogram byCompanyAggregation = aggregations.get("salary_histogram"); List extends Histogram.Bucket> buckets = byCompanyAggregation.getBuckets(); // 输出各个桶的内容 log.info("-------------------------------------------"); log.info("聚合信息:"); for (Histogram.Bucket bucket : buckets) { keyCountMap.put(bucket.getKeyAsString(), bucket.getDocCount()); log.info("桶名:{} | 总数:{}", bucket.getKeyAsString(), bucket.getDocCount()); } log.info("-------------------------------------------"); } } catch (IOException e) { log.error("", e); } return keyCountMap; } /** * 按出生日期进行分桶: */ public Object aggrBucketDateHistogram() { Map keyCountMap = new HashMap<>(); try { AggregationBuilder aggr = AggregationBuilders.dateHistogram("birthday_histogram") .field("birthDate") .interval(1) .dateHistogramInterval(DateHistogramInterval.YEAR) .format("yyyy"); // 查询源构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.size(0); searchSourceBuilder.aggregation(aggr); // 创建查询请求对象,将查询条件配置到其中 SearchRequest request = new SearchRequest(indexName); request.source(searchSourceBuilder); // 执行请求 SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT); // 获取响应中的聚合信息 Aggregations aggregations = response.getAggregations(); // 输出内容 if (RestStatus.OK.equals(response.status())) { // 分桶 Histogram byCompanyAggregation = aggregations.get("birthday_histogram"); List extends Histogram.Bucket> buckets = byCompanyAggregation.getBuckets(); // 输出各个桶的内容 log.info("-------------------------------------------"); log.info("聚合信息:"); for (Histogram.Bucket bucket : buckets) { keyCountMap.put(bucket.getKeyAsString(), bucket.getDocCount()); log.info("桶名:{} | 总数:{}", bucket.getKeyAsString(), bucket.getDocCount()); } log.info("-------------------------------------------"); } } catch (IOException e) { log.error("", e); } return keyCountMap; } } 3、Metric 与 Bucket 聚合分析
(1)、Restful 操作示例
按照员工岁数分桶、然后统计每个岁数员工工资最高值:
GET http://localhost:9200/testindex/_search //请求 { "size": 0, "aggs": { "salary_bucket": { "terms": { "field": "age", "size": "10" }, "aggs": { "salary_max_user": { "top_hits": { "size": 1, "sort": [ { "salary": { "order": "desc" } } ] } } } } } }
(2)、Java 代码示例
package com.example.elasticsearch.demos.web.service.aggregation; import com.alibaba.fastjson.JSON; import com.example.elasticsearch.demos.web.model.entity.UserInfo; import lombok.extern.slf4j.Slf4j; import org.elasticsearch.action.search.SearchRequest; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.rest.RestStatus; import org.elasticsearch.search.SearchHit; import org.elasticsearch.search.aggregations.AggregationBuilder; import org.elasticsearch.search.aggregations.AggregationBuilders; import org.elasticsearch.search.aggregations.Aggregations; import org.elasticsearch.search.aggregations.bucket.terms.Terms; import org.elasticsearch.search.aggregations.metrics.ParsedTopHits; import org.elasticsearch.search.builder.SearchSourceBuilder; import org.elasticsearch.search.sort.SortOrder; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.beans.factory.annotation.Value; import org.springframework.stereotype.Service; import java.io.IOException; import java.util.HashMap; import java.util.List; import java.util.Map; /** * 聚合 Bucket 与 Metric */ @Slf4j @Service public class AggrBucketMetricService { @Autowired private RestHighLevelClient restHighLevelClient; @Value("${myindex}") private String indexName; /** * topHits 按照员工岁数分桶、然后统计每个岁数员工工资最高值 */ public Object aggregationTopHits() { Map
ageMaxSalaryMap = new HashMap<>(); try { AggregationBuilder testTop = AggregationBuilders.topHits("salary_max_user") .size(1) .sort("salary", SortOrder.DESC); AggregationBuilder salaryBucket = AggregationBuilders.terms("salary_bucket") .field("age") .size(10); salaryBucket.subAggregation(testTop); // 查询源构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.size(0); searchSourceBuilder.aggregation(salaryBucket); // 创建查询请求对象,将查询条件配置到其中 SearchRequest request = new SearchRequest(indexName); request.source(searchSourceBuilder); // 执行请求 SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT); // 获取响应中的聚合信息 Aggregations aggregations = response.getAggregations(); // 输出内容 if (RestStatus.OK.equals(response.status())) { // 分桶 Terms byCompanyAggregation = aggregations.get("salary_bucket"); List extends Terms.Bucket> buckets = byCompanyAggregation.getBuckets(); // 输出各个桶的内容 log.info("-------------------------------------------"); log.info("聚合信息:"); for (Terms.Bucket bucket : buckets) { log.info("桶名:{}", bucket.getKeyAsString()); ParsedTopHits topHits = bucket.getAggregations().get("salary_max_user"); for (SearchHit hit : topHits.getHits()) { UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class); ageMaxSalaryMap.put(bucket.getKeyAsString(), userInfo.getSalary()); log.info(hit.getSourceAsString()); } } log.info("-------------------------------------------"); } } catch (IOException e) { log.error("", e); } return ageMaxSalaryMap; } } 九、项目源码及对应ES安装包
1、elasticsearch-7.6.1安装包
elasticsearch7.6.1https://download.csdn.net/download/asd051377305/88397087
2、项目源代码
基于SpringBoot+elasticsearch的操作项目https://download.csdn.net/download/asd051377305/88397090
还没有评论,来说两句吧...