快速体验 Spring Cloud Alibaba AI
Spring AI 旨在简化包含人工智能相关功能的应用程序的开发,避免不必要的复杂性。
Spring AI 的核心是提供抽象,作为开发 AI 应用程序的基础。这些抽象有多种实现方式,只需极少的代码改动即可轻松实现各个大模型之间的切换。
Spring AI 提供以下功能:
- 支持所有主要模型提供商,例如 OpenAI、Microsoft、Amazon、Google 和 Huggingface。
- 支持的模型类型包括“聊天”和“文本到图像”,还有更多模型类型正在开发中。
- 跨 AI 提供商的可移植 API,用于聊天和嵌入模型。支持同步和流 API 选项。还支持下拉访问模型特定功能。
- AI 模型输出到 POJO 的映射。
- 支持所有主要矢量数据库提供商,例如 Azure 矢量搜索、Chroma、Milvus、Neo4j、PostgreSQL/PGVector、PineCone、Qdrant、Redis 和 Weaviate
- 跨 Vector Store 提供商的可移植 API,包括同样可移植的新颖的类似 SQL 的元数据过滤器 API。
- 函数调用
- AI 模型和向量存储的 Spring Boot 自动配置和启动器。
- 数据工程的 ETL 框架
Spring Cloud Alibaba AI
Spring Cloud Alibaba AI (以下简称 SCA AI)基于 Spring AI 0.8.1 版本完成通义系列大模型的接入。
DashScope灵积模型服务建立在 模型即服务(Model-as-a-Service,MaaS)的理念基础之上,围绕AI各领域模型,通过标准化的API提供包括模型推理、模型微调训练在内的多种模型服务。。
SCA AI 目前支持的模型主要有:对话、文生图、文生语音,更多功能特性正在适配中。
快速体验
创建 SCA AI 应用
在 pom.xml 中引入如下依赖配置:
com.alibaba.cloud spring-cloud-starter-alibaba-ai com.alibaba.cloud spring-cloud-alibaba-dependencies ${spring.cloud.alibaba.version} pom import spring-milestones Spring Milestones https://repo.spring.io/milestone false spring-snapshots Spring Snapshots https://repo.spring.io/snapshot false api-key 配置
在正式开始体验之前,需要申请到模型的 api-key。申请地址:https://help.aliyun.com/zh/dashscope/developer-reference/activate-dashscope-and-create-an-api-key
您可以通过 DashScope 提供的方式配置 api-key,SCA AI 完全兼容 DashScope 环境变量配置 key 的方式:https://help.aliyun.com/zh/dashscope/developer-reference/api-key-settings
当然也可以通过 SCA AI 中提供的如下配置项配置:
spring: cloud: ai: tongyi: # api-key setting: api-key: sk-xxxxxxxxxxxxxxxxxxx
聊天对话体验
官方 Example:https://github.com/alibaba/spring-cloud-alibaba/tree/2023.x/spring-cloud-alibaba-examples/spring-cloud-ai-example
public class ChatService { // 聊天客户端 private final ChatClient chatClient; // stream 流式客户端 private final StreamingChatClient streamingChatClient; @Autowired public ChatService(ChatClient chatClient, StreamingChatClient streamingChatClient) { this.chatClient = chatClient; this.streamingChatClient = streamingChatClient; } @Override public String normalCompletion(String message) { Prompt prompt = new Prompt(new UserMessage(message)); return chatClient.call(prompt).getResult().getOutput().getContent(); } @Override public Map
streamCompletion(String message) { StringBuilder fullContent = new StringBuilder(); streamingChatClient.stream(new Prompt(message)) .flatMap(chatResponse -> Flux.fromIterable(chatResponse.getResults())) .map(content -> content.getOutput().getContent()) .doOnNext(fullContent::append) .last() .map(lastContent -> Map.of(message, fullContent.toString())) .block(); return Map.of(message, fullContent.toString()); } } 之后,创建 controller 接口调用 service 服务:
@Autowired private ChatService chatService; @GetMapping("/example") public String completion( @RequestParam(value = "message", defaultValue = "Tell me a joke") String message ) { return chatService.completion(message); } @GetMapping("/stream") public Map
streamCompletion( @RequestParam(value = "message", defaultValue = "请告诉我西红柿炖牛腩怎么做?") String message ) { return chatService.streamCompletion(message); } 下面进行接口测试:
$ curl --get --data-urlencode 'message=Tell me a joke about a cow.' http://localhost:8080/ai/example # 获得的响应如下: Here's a classic cow joke for you: Why did the farmer separate the chicken and the sheep from the cows? Because he wanted to have eggs-clusive relationships with his hens!
文生图体验
public class ImagesService { // 图像生成客户端 private final ImageClient imageClient; @Autowired public ImagesService(ImageClient client) { this.imageClient = client; } @Override public ImageResponse genImg(String imgPrompt) { var prompt = new ImagePrompt(imgPrompt); return imageClient.call(prompt); } }
文生图对应的 controller 接口如下:
@Autowired private ImagesService imagesService; @GetMapping("/img") public ImageResponse genImg( @RequestParam(value = "prompt", defaultValue = "Painting a picture of blue water and blue sky.") String imgPrompt ) { return imagesService.genImg(imgPrompt); }
接口调用体验:
$ curl http://localhost:8080/img?prompt="美女" # 响应数据为 base64 编码图片和图片网址,注意:图片 url 地址是有有效期的。
点击地址我们可以看到如下生成的美女图片:
文生语音体验
public class AudioService { private final SpeechClient speechClient; @Autowired public AudioService(SpeechClient client) { this.speechClient = client; } @Override public String genAudio(String text) { var resWAV = speechClient.call(text); return save(resWAV, SpeechSynthesisAudioFormat.WAV.getValue()); } // 辅助方法,用于将模型的响应保存到本地. private String save(ByteBuffer audio, String type) { String currentPath = System.getProperty("user.dir"); LocalDateTime now = LocalDateTime.now(); DateTimeFormatter formatter = DateTimeFormatter.ofPattern("MM-dd-HH-mm-ss"); String fileName = currentPath + File.separator + now.format(formatter) + "." + type; File file = new File(fileName); try (FileOutputStream fos = new FileOutputStream(file)) { fos.write(audio.array()); } catch (Exception e) { throw new RuntimeException(e); } return fileName; } }
controller 接口代码如下:
@Autowired private AudioService audioService; @GetMapping("/audio") public String genAudio(@RequestParam(value = "prompt", defaultValue = "你好,Spring Cloud Alibaba AI 框架!") String prompt) { return audioService.genAudio(prompt); }
调用接口体验:
$ curl http://localhost:8080/ai/audio?prompt="你好,人工智能!" # 响应值为保存的音频路径。 D:\open_sources\sca-ai\spring-ai\04-29-22-44-22.wav
至此,Spring Cloud Alibaba AI 提供的三种基本功能已经体验完成,后续您还可以通过设置一些个性化的参数来使大模型生成各种各样的图片和音频等。
更多配置项可以参考:https://help.aliyun.com/zh/dashscope/developer-reference/api-details。社区相关的文档正在完善,更多功能正在开发中!
还没有评论,来说两句吧...