全文检索-ElasticSearch

全文检索-ElasticSearch

码农世界 2024-06-12 后端 86 次浏览 0个评论

全文检索-ElasticSearch全文检索-ElasticSearch

1.基本概念

1.Index索引

动词:相当于MySQL中的insert;

名词:相当于MySQL中的DataBase;

2.Type(类型)

在Index(索引)中,可以定义一个或多个类型

类似于MySQL中的Table;每一种类型的数据放在一起

3.Document(文档)

保存在某个索引(index)下,某种类型(Type) 的一个数据(Document),文档是JSON格式的,Document就像是MySQL 中的某个Table里面的内容 类似一行数据

全文检索-ElasticSearch

4.倒排索引

全文检索-ElasticSearch

2.Docker 安装ElasticSearch

2.1 拉取镜像

docker pull elasticsearch:7.4.2
docker pull kibana:7.4.2

2.2 创建实例

2.2.1 创建挂载目录

mkdir  ./config
mkdir ./data

 记得授予权限

chmod -R 777 ./elasticsearch

2.2.2 使容器外任何地址都能够访问 elasticsearch

echo "http.host: 0.0.0.0">>./config/elasticsearch.yml

elasticsearch.yml

http.host: 0.0.0.0

2.2.3 docker 启动

docker run --name elasticsearch -p 9200:9200 -p9300:9300 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms512m -Xmx1024m" \
-v ./config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v ./data:/usr/share/elasticsearch/data \
-v ./plugins:/usr/share/elasticsearch/plugins \
-d elasticsearch:7.4.2

全文检索-ElasticSearch

2.3 安装Kibana
docker run --name kibana -e ELASTICSEARCH_HOSTS=http://192.168.232.209:9200 -p 5601:5601 \
-d kibana:7.4.2

全文检索-ElasticSearch

 3.初步检索

3.1 _cat 

查看节点信息

http://192.168.232.209:9200/_cat/nodes

查看elasticsearch的健康状态

http://192.168.232.209:9200/_cat/health

查看elasticsearch的主节点信息

http://192.168.232.209:9200/_cat/master

查看所有索引

http://192.168.232.209:9200/_cat/indices

3.2 索引一个文档(保存或修改一条记录)

保存一个数据,保存在那个索引的哪个类型下,指定用哪个唯一标识

http://192.168.232.209:9200/customer/external/1

全文检索-ElasticSearch

 3.3 查询文档 

http://192.168.232.209:9200/customer/external/1

3.4 更新文档 

全文检索-ElasticSearch

3.4.1 _update

这个操作如果修改文档的值和原来一样,则不会更新版本。

3.4.2 

全文检索-ElasticSearch

3.5 删除文档

全文检索-ElasticSearch

3.6 bulk 批量 API

全文检索-ElasticSearch全文检索-ElasticSearch

批量操作 

从这个网站复制

https://gitee.com/xlh_blog/common_content/blob/master/es%E6%B5%8B%E8%AF%95%E6%95%B0%E6%8D%AE.json#

执行 /_bluk 

全文检索-ElasticSearch

 4.进阶检索

1.searchAPI

ES支持两种基本方式检索:

  • 一个是通过使用REST request URI 发送搜索参数(uri + 检索参数)
  • 另一个是通过使用REST request body 来发送它们 (uri + 请求体)
    GET /bank/_search?q=*&sort=account_number:asc

    q=* 查询所有

    sort 跟据 account_number 升序

    2.QueryDSL

    全文检索-ElasticSearch

    全文检索-ElasticSearch

    GET /bank/_search
    {
      "query": {
        "match_all": {}
      },
      "sort": [
        {
          "account_number":  "asc"
        },
        {
          "balance": "desc"
        }
      ]
    }

    3.部分检索

    GET /bank/_search
    {
      "query": {
        "match_all": {}
      },
      "sort": [
        {
          "account_number":  "desc"
        },
        {
          "balance": "desc"
        }
      ],
      "from": 0,
      "size": 20,
      "_source": ["balance","account_number"]
      
    }

    4. match[匹配查询]

    GET /bank/_search
    {
      "query": {
        "match": {
          "account_number": 20
        }
      }
      
    }
    GET /bank/_search
    {
      "query": {
        "match": {
          "address": "mill lane"
        }
      }
      
    }

    全文检索按照评分进行排序

    5.match_phrase [短语匹配]

    将需要匹配的值当成一个整体单词(不分词)进行检索

    GET /bank/_search
    {
      "query": {
        "match_phrase": {
          "address": "mill lane"
        }
      }
      
    }

    6.multi_match [多字段匹配]

    这是或,只要一个字段满足,就返回

    GET /bank/_search
    {
      "query": {
        "multi_match": {
          "query": "mill",
          "fields": ["state","address"]
        }
      }
      
    }

    能够正常分词 

    GET /bank/_search
    {
      "query": {
        "multi_match": {
          "query": "mill Movico",
          "fields": ["city","address"]
        }
      }
      
    }
    

    7.bool复杂查询

    bool用来做复杂查询:

    复合语句可以合并 任何 其他查询语句,包括复合语句,了解这一点是很重要的。这就意味着,复合语句之间可以相互嵌套,可以表达非常复杂的逻辑。

    must: 必须达到must列举所有条件 也就是相当于 AND

    must_not: 且不满足里面的条件

    should: 不是or 就是匹配上面有加分项

    GET /bank/_search
    {
      
      "query": {
        "bool": {
          "must": [
            {
              "match": {
                "gender": "m"
              }
            },
            {
              "match": {
                "address": "Mill"
              }
            }
          ],
          "must_not": [
            {
              "match": {
                "age": 28 
              }
            }
          ],
          "should": [
            {
              "match": {
                "lastname": "v"
              }
            }
          ]
          
          
        }
      }
      
      
    }

    8.filter [结果过滤]

    并不是所有的查询都需要产生分数,特别是那些仅用于 "filtering" (过滤) 的文档。为了不计算分数Elasticsearch 会自动检查场景并且优化查询的执行。

    GET /bank/_search
    {
      
      "query": {
        "bool": {
          "must": [
            {
              "match": {
                "gender": "m"
              }
            },
            {
              "match": {
                "address": "Mill"
              }
            }
          ],
          "must_not": [
            {
              "match": {
                "age": 18 
              }
            }
          ],
          "should": [
            {
              "match": {
                "lastname": "Wallace"
              }
            }
          ],
          "filter": {
            "range": {
              "age": {
                "gte": 18,
                "lte": 20
              }
            }
          }
        }
      }
    }

    9.term

    和match一样。匹配某个属性的值。全文检索字段用match,其他非text 字段匹配用term

    不用全文检索的时候用term 比如数字 年龄

    GET /bank/_search
    {
    "query": {
      "term": {
        "age": {
          "value": "28"
        }
      }
    }
    }
    GET /bank/_search
    {
    "query": {
      "match": {
        "email.keyword": "margueritewall@aquoavo.com"
      }
    }
    }

    address.keyword 和 match_phrase 区别:

    前者 就是精确匹配 ,后者包含这个短语 就行

    非文本字段 用 term

    文本字段用 match

    10. aggregations (执行聚合)

    聚合提供了从数据中分组和提取数据的能力。最简单的聚合方法大致等于 SQL GROUP BY 和 SQL 的聚合函数 。在Elasticsearch 中, 您有执行搜索返回 hits (命中结果) ,并且同时返回聚合结果,把一个响应中的所有hits (命中结果) 分隔开的能力 。 这是非常强大且有效,您可以执行查询和多个聚合,并且在一次使用中得到各自 的(任何一个的) 返回结果,使用一次简化和简化的API 来避免网络往返。

    搜索 address 中包含mill 的所有人的年龄分布以及平均年龄,但不显示这些人的详情。

    GET /bank/_search
    {
      "query": {
        "match": {
          "address": "mill"
        }
      },
      "aggs": {
        "ageAgg": {
          "terms": {
            "field": "age",
            "size": 10
          }
        },
        "ageAvg":{
        "avg": {
          "field": "age"
        }
        },
        "blanceAvg":{
          "avg": {
            "field": "balance"
          }
        }
      },
      "size": 0
    }

    复杂:

    按照年龄聚合,并且请求这些年龄段的这些人的平均薪资

    ##按照年龄聚合,并且请求这些年龄段的这些人的平均薪资
    GET /bank/_search
    {
      "query": {
        "match_all": {}
      },
      "aggs": {
        "aggAgg": {
          "terms": {
            "field": "age",
            "size": 100
          },
          "aggs": {
            "aggAvg": {
              "avg": {
                "field": "balance"
              }
            }
          }
        }
      }
      
      
    }
    

    复杂2:

    查出所有年龄分布,并且这些年龄段中M的平均薪资和F的平均薪资以及这个年龄段的总体平均薪资.

    ##查出所有年龄分布,并且这些年龄段中M的平均薪资和F的平均薪资以及这个年龄段的总体平均薪资
    GET /bank/_search
    {
      "query": {
        "match_all": {}
      },
      "aggs": {
        "aggAggs": {
          "terms": {
            "field": "age",
            "size": 100
          }
          ,
        "aggs": {
          "avgBalanceAll":{
            "avg": {
            "field": "balance"
          }
          }
          ,
           "genderAgg": {
              "terms": {
                "field": "gender.keyword",
                "size": 2
              },
              "aggs": {
                "avgBlance": {
                  "avg": {
                    "field": "balance"
                  }
                }
              }
            }
        }
        }
      }
    }

    11.mapping(映射)

    全文检索-ElasticSearch所有数据类型

    全文检索-ElasticSearch

    创建一个有类型定义的索引

    PUT /my_index
    {
      "mappings": {
        "properties": {
          "age":{"type": "integer"  },
          "email":{"type": "keyword"},
          "name":{"type": "text"}
        }
      }
    }

     添加映射字段

    PUT /my_index/_mapping
    {
      
      "properties": {
          "employee-id":{
            "type":"keyword",
            "index":false 
          }
        }
    }

    index =false 代表不参与索引,是搜索不到他的,相当于冗余存储字段,通过其他字段查出来

    迁移数据

    创建新索引

    PUT /newbank
    {
      "mappings": {
        "properties": {
          "account_number": {
            "type": "long"
          },
          "address": {
            "type": "text"
          },
          "age": {
            "type": "integer"
          },
          "balance": {
            "type": "long"
          },
          "city": {
            "type": "keyword"
          },
          "email": {
            "type": "keyword"
          },
          "employer": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "firstname": {
            "type": "text"
          },
          "gender": {
            "type": "keyword"
          },
          "lastname": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "state": {
            "type": "keyword"
          }
        }
      }
    }
    

    全文检索-ElasticSearch

    上面是6.0以后不用类型保存的迁移方法

    下面是6.0之前

     全文检索-ElasticSearch

    POST _reindex
    {
      "source": {
        "index": "bank",
        "type": "account"
      },
      "dest": {
        "index": "newbank"
      }
    }

     5.分词

    全文检索-ElasticSearch

    POST _analyze
    {
      "analyzer": "standard",
      "text": "The 2 QUICK Brown_Foxes jumped over the lazy dog's bone."
    }

     1.安装ik分词器

    注意:不能用默认elastics-plugin install xx.zip 进行自动安装

    进入这个网址下

    Index of: analysis-ik/stable/ (infinilabs.com)

    进入es 容器·内部 plugins 目录

    docker exec -it 容器id /bin/bash

    全文检索-ElasticSearch

    POST _analyze
    {
      "analyzer": "ik_smart",
      "text": "我是中国人"
    }
    
    POST _analyze
    {
      "analyzer": "ik_max_word",
      "text": "鸡你太美"
    }
    

     安装方法和我上一篇文章一样

    ElasticSearch-CSDN博客

    vagrant ssh密码登录  122集

    全文检索-ElasticSearch

    2.自定义分词器

    全文检索-ElasticSearch全文检索-ElasticSearch

    1.重新安装nginx

    命令

    在nginx文件夹下,执行

    docker run -p 80:80 --name nginx \
    -v ./html:/usr/share/nginx/html \
    -v ./logs:/var/log/nginx \
    -v ./conf:/etc/nginx  \
    -d nginx:1.10

     2. 创建分词文件

    /opt/nginx/html/es/fenci.txt

    尚硅谷
    乔碧螺

    3.在es插件,路径下找到xml文件对应的分词库路径,保存位置进行修改

    "/opt/elasticearch/plugins/ik/config/IKAnalyzer.cfg.xml"

    
    
    
    	IK Analyzer 扩展配置
    	
    	
    	 
    	
    	
    	 http://虚拟机地址:80/es/fenci.txt
    	
    	
    
    

    4.修改以后重启restart es容器

    docker restart elasticsearch

    6.Elasticsearch整合Spirngboot使用

    1.Elasticsearch-Rest-Client 官方 RestClient ,封装类ES操作,API层次分明,上手简单。

    最终选择Elasticsearch-Rest-Client (elasticsearch-rest-high-level-client)

    https://www.elastic.co/guid/en/elasticsearch/client/java-rest/current/java-rest-high.html
    
            
                org.elasticsearch.client
                elasticsearch-rest-high-level-client
                ${elasticsearch.version}
            
    package com.jmj.gulimall.search.config;
    import org.apache.http.HttpHost;
    import org.elasticsearch.client.RestClient;
    import org.elasticsearch.client.RestHighLevelClient;
    import org.springframework.context.annotation.Bean;
    import org.springframework.context.annotation.Configuration;
    /**
     * 导入依赖
     * 编写配置 给容器中注入一个 RestHighLevelClient
     * 参照官方API 操作就可以了 https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.4/java-rest-high-getting-started-initialization.html
     */
    @Configuration
    public class GulimallElasticSearchConfig {
        @Bean
        public RestHighLevelClient esRestClient() {
            RestHighLevelClient client = new RestHighLevelClient(
                    RestClient.builder(
                            new HttpHost("192.168.232.209", 9200, "http")));
            return client;
        }
    }
    

    2.RequestOption

    请求选项:比如安全验证,带token 请求头

    package com.jmj.gulimall.search.config;
    import org.apache.http.HttpHost;
    import org.elasticsearch.client.RequestOptions;
    import org.elasticsearch.client.RestClient;
    import org.elasticsearch.client.RestHighLevelClient;
    import org.springframework.context.annotation.Bean;
    import org.springframework.context.annotation.Configuration;
    /**
     * 导入依赖
     * 编写配置 给容器中注入一个 RestHighLevelClient
     * 参照官方API 操作就可以了 https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.4/java-rest-high-getting-started-initialization.html
     */
    @Configuration
    public class GulimallElasticSearchConfig {
        public static final RequestOptions COMMON_OPTIONS;
        static {
            RequestOptions.Builder builder = RequestOptions.DEFAULT.toBuilder();
    //        builder.addHeader("Authorization", "Bearer " + TOKEN);
    //        builder.setHttpAsyncResponseConsumerFactory(
    //                new HttpAsyncResponseConsumerFactory
    //                        .HeapBufferedResponseConsumerFactory(30 * 1024 * 1024 * 1024));
            COMMON_OPTIONS = builder.build();
        }
        @Bean
        public RestHighLevelClient esRestClient() {
            RestHighLevelClient client = new RestHighLevelClient(
                    RestClient.builder(
                            new HttpHost("192.168.232.209", 9200, "http")));
            return client;
        }
    }
    

    3.Index API

    第一种

    全文检索-ElasticSearch

     第二种

    全文检索-ElasticSearch

    第三种

    全文检索-ElasticSearch

    第四种

    全文检索-ElasticSearch

       /**
         * 测试存储数据到ES
         * 更新也可以
         */
        @Test
        void indexData() throws IOException {
            //index索引 users
            IndexRequest indexRequest = new IndexRequest("users");
            //设置document id ,不设置就会默认生成
            /**
             * 若是同样的id重复执行,就是更新操作 乐观锁控制版本
             */
            indexRequest.id("1");
            //1. key value  pair
    //        indexRequest.source("userName","zhangsan","age",18,"gender","男");
            //2,JSON
            User user = new User("zhangsan", "男", 18);
            String json = new ObjectMapper().writeValueAsString(user);
            //一秒超时时间
            indexRequest.timeout(TimeValue.timeValueSeconds(1));
            indexRequest.source(json, XContentType.JSON);//要保存的内容
            //执行操作
            IndexResponse index = client.index(indexRequest, GulimallElasticSearchConfig.COMMON_OPTIONS);
            //提取有用的响应数据
            System.out.println(index);
        }

    4.查询API

     @Data
        public static class Account{
            private int account_number;
            private String firstname;
            private String address;
            private int balance;
            private String gender;
            private String city;
            private String employer;
            private String state;
            private int age;
            private String email;
            private String lastname;
        }
        /**
         * search检索
         */
        @Test
        void searchData() throws IOException {
            //1、创建检索请求
            SearchRequest searchRequest = new SearchRequest();
            //2、指定索引
            searchRequest.indices("bank");
            //3、检索条件DSL
            SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
    //        sourceBuilder.query();
    //        sourceBuilder.from();
    //        sourceBuilder.size();
    //        sourceBuilder.aggregations();
    //        sourceBuilder.query(QueryBuilders.matchAllQuery());
            sourceBuilder.query(QueryBuilders.matchQuery("address","mill"));
            //按照年龄进行分组
            TermsAggregationBuilder ageAgg = AggregationBuilders.terms("ageAgg").field("age").size(10);
            sourceBuilder.aggregation(ageAgg);
            //计算平均薪资
            AvgAggregationBuilder balanceAge = AggregationBuilders.avg("balanceAvg").field("balance");
            sourceBuilder.aggregation(balanceAge);
            System.out.println("检索条件:"+sourceBuilder);
            searchRequest.source(sourceBuilder);
            //4、执行检索
            SearchResponse response = client.search(searchRequest, GulimallElasticSearchConfig.COMMON_OPTIONS);
            //5、响应 分析结果
    //        System.out.println(response.toString());
            SearchHits hits = response.getHits();
            SearchHit[] hits1 = hits.getHits();
            for (SearchHit documentFields : hits1) {
                String sourceAsString = documentFields.getSourceAsString();
                Account account = new ObjectMapper().readValue(sourceAsString, Account.class);
                System.out.println(account);
            }
            //获取分析数据
            Aggregations aggregations = response.getAggregations();
            Terms ageAgg1 = aggregations.get("ageAgg");
            for (Terms.Bucket bucket : ageAgg1.getBuckets()) {
                String keyAsString = bucket.getKeyAsString();
                System.out.println("年龄:"+keyAsString+"=>"+bucket.getDocCount());
            }
            Avg balanceAvg = aggregations.get("balanceAvg");
            System.out.println("平均薪资:"+balanceAvg.getValue());
        }
    

    7.SKU 在es种存储的模型 

    其中,库存信息的标题使用了ik分词器,图片信息,品牌名,品牌id等信息均不可检索。商品的规格参数等信息以nested类型,即嵌入属性存储。相关的细节这里不再赘述。

    PUT product
    {
      "mappings": {
        "properties": {
          "skuId": {
            "type": "long"
          },
          "spuId": {
            "type": "long"
          },
          "skuTitle": {
            "type": "text",
            "analyzer": "ik_smart"
          },
          "skuPrice": {
            "type": "keyword"
          },
          "skuImg": {
            "type": "keyword",
            "index": false,
            "doc_values": false
          },
          "saleCount": {
            "type": "long"
          },
          "hosStock": {
            "type": "boolean"
          },
          "hotScore": {
            "type": "long"
          },
          "brandId": {
            "type": "long"
          },
          "catalogId": {
            "type": "long"
          },
          "brandName": {
            "type": "keyword",
            "index": false,
            "doc_values": false
          },
          "brandImg": {
            "type": "keyword",
            "index": false,
            "doc_values": false
          },
          "catalogName": {
            "type": "keyword",
            "index": false,
            "doc_values": false
          },
          "attrs": {
            "type": "nested",
            "properties": {
              "attrId": {
                "type": "long"
              },
              "attrName": {
                "type": "keyword",
                "index": false,
                "doc_values": false
              },
              "attrValue": {
                "type": "keyword"
              }
            }
          }
        }
      }
    }
    

    8.ES扁平化处理

    PUT my_index/_doc/1
    {
      "group":"fans",
      "user":[
        {
          "first":"John",
          "last":"Smith"
        },
        {
          "first":"Alice",
          "last":"White"
        }
      ]
    }

    全文检索-ElasticSearch

    GET my_index/_search
    {
      "query": {
        "bool": {
          "must": [
            {
              "match": {
                "user.first": "Alice"
              }
            },
            {
              "match": {
                "user.first": "Alice"
              }
            }
          ]
        }
      }
    }

    全文检索-ElasticSearch

     取消扁平化处理 

    PUT my_index
    {
      "mappings": {
        "properties": {
          "user":{
            "type": "nested"
          }
        }
      }
    }

    再次查询

    全文检索-ElasticSearch

    9. 商城上架

     @Override
        @Transactional(rollbackFor = Exception.class)
        public void up(Long spuId) {
            //组装需要的数据
            //1. 查出当前 spuid 对应的所有sku 信息,品牌 的名字。
            List skuInfoEntityList = skuInfoService.getSkusBySpuId(spuId);
            //TODO 查询当前sku的所有可以用来检索的属性
            List baseAttrs = productAttrValueService.baseAttrlistforspu(spuId);
            List attrIds = baseAttrs.stream().map(a -> a.getAttrId()).collect(Collectors.toList());
            List searchAttrIds = attrService.selectSearchAtts(attrIds);
            List attrsList = baseAttrs.stream().filter(item -> searchAttrIds.contains(item.getAttrId()))
                    .map(item -> {
                        SkuEsModel.Attrs attrs1 = new SkuEsModel.Attrs();
                        BeanUtils.copyProperties(item, attrs1);
                        return attrs1;
                    })
                    .collect(Collectors.toList());
            //TODO 发送远程调用 库存系统查询是否有库存
            List skuIds = skuInfoEntityList.stream().map(s -> s.getSkuId()).distinct().collect(Collectors.toList());
            List skusHasStock = wareFeignService.getSkusHasStock(skuIds);
            Map stockMap = skusHasStock.stream().collect(Collectors.toMap(s -> s.getSkuId(), s -> s.getHasStock()));
            //2.封装每个SKU 的信息
            List upProducts = skuInfoEntityList.stream().map(sku -> {
                SkuEsModel esModel = new SkuEsModel();
                BeanUtils.copyProperties(sku, esModel);
                esModel.setSkuPrice(sku.getPrice());
                esModel.setSkuImg(sku.getSkuDefaultImg());
                Long skuId = esModel.getSkuId();
                Boolean aBoolean = stockMap.get(skuId);
                if (aBoolean!=null){
                    esModel.setHasStock(aBoolean);
                }else {
                    esModel.setHasStock(false);
                }
                //TODO 热度评分
                esModel.setHotScore(0L);
                //TODO 查询品牌和分类的名字信息
                BrandEntity brand = brandService.getById(esModel.getBrandId());
                esModel.setBrandName(brand.getName());
                esModel.setBrandImg(brand.getLogo());
                CategoryEntity category = categoryService.getById(esModel.getCatalogId());
                esModel.setCatalogName(category.getName());
                //设置检索属性
                esModel.setAttrs(attrsList);
                return esModel;
            }).collect(Collectors.toList());
            //TODO 将数据发送给es进行保存
            searchFeignService.productStatusUp(upProducts);
            //TODO 修改状态
            this.update(new UpdateWrapper()
                    .set("publish_status", ProductConstant.StatusEnum.SPU_UP.getCode())
                            .set("update_taime",new Date())
                    .eq("id",spuId));
            //Feign调用流程
            /**
             * 1、构造请求数据,将对象转为json
             * 2、发送请求进行执行(执行成功会解码响应数据)
             * 3、执行请求会有重试机制
             * //默认重试机制是关闭状态
             * while(true){
             *    
             * }
             */
        }

转载请注明来自码农世界,本文标题:《全文检索-ElasticSearch》

百度分享代码,如果开启HTTPS请参考李洋个人博客
每一天,每一秒,你所做的决定都会改变你的人生!

发表评论

快捷回复:

评论列表 (暂无评论,86人围观)参与讨论

还没有评论,来说两句吧...

Top