Linux基础IO【II】真的很详细

Linux基础IO【II】真的很详细

码农世界 2024-06-19 后端 91 次浏览 0个评论

目录

一.文件描述符

1.重新理解文件

1.推论

2.证明

2.理解文件描述符

1.文件描述符的分配规则

3.如何理解文件操作的本质?

4.输入重定向和输出重定向        

1.原理

2.代码实现重定向

3.dup函数

​编辑 

4.命令行中实现重定向

 二.关于缓冲区

1.现象

2.重新理解缓冲区

3.缓冲区刷新策略问题

4.缓冲区的位置

​编辑

5.如何解释刚刚的现象呢?

总结


今天,我们接着在上一篇文章的基础上,继续学习基础IO。观看本文章之前,建议先看:Linux基础IO【I】,那,我们就开始吧!

Linux基础IO【II】真的很详细

一.文件描述符

1.重新理解文件

 文件操作的本质:进程和被打开文件之间的关系。

1.推论

我们先用一段代码和一个现象来引出我们今天要讨论的问题:

上码:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
//我没有指明具体的路径,采用了字符串拼接的方式。
#define FILE_NAME(number) "log.txt" #number
int main()
{
    umask(0);
    int fd1 = open(FILE_NAME(1), O_WRONLY | O_CREAT, 0666);
    int fd2 = open(FILE_NAME(2), O_WRONLY | O_CREAT, 0666);
    int fd3 = open(FILE_NAME(3), O_WRONLY | O_CREAT, 0666);
    int fd4 = open(FILE_NAME(4), O_WRONLY | O_CREAT, 0666);
    int fd5 = open(FILE_NAME(5), O_WRONLY | O_CREAT, 0666);
    printf("fd1:%d\n", fd1);
    printf("fd2:%d\n", fd2);
    printf("fd3:%d\n", fd3);
    printf("fd4:%d\n", fd4);
    printf("fd5:%d\n", fd5);
    close(fd1);
    close(fd2);
    close(fd3);
    close(fd4);
    close(fd5);
}

Linux基础IO【II】真的很详细

看到输出的结果,各位大佬想到了什么?我想到了数组的下标。也许这和数组有这千丝万缕的关系,但我们都只是猜测,接下来就证明我们的猜测。

首先我们可以利用现在掌握的知识推导出这样一条逻辑链:

  1. 进程可以打开多个文件吗?可以,而且我们刚刚已经证实了。
  2. 所以系统中一定会存在大量的被打开的文件。
  3. 所以操作系统要不要把这些被打开的文件给管理起来?要。
  4. 所以如何管理?先描述,再组织。
  5. 操作系统为了管理这些文件,一定会在内核中创建相应的数据结构来表示文件。
  6. 这个数据结构就是struct_file结构体。里面包含了我们所需的大量的属性。

我们回到刚刚代码的运行结果上来:

为什么从3开始,0,1,2分别表示的是什么? 

其实系统为一个处于运行态的进程默认打开了3个文件(3个标准输入输出流):

  • stdin(标准输入流)  :对应的是键盘。
  • stdout(标准输出流): 对应的是显示器。
  • stderr(标准错误流)   :对应的是显示器。

     上面我们提及的struct_file结构体在内核中的数据如下:

    /*
     * Open file table structure
     */
    struct files_struct {
      /*
       * read mostly part
       */
    	atomic_t count;
    	bool resize_in_progress;
    	wait_queue_head_t resize_wait;
    	struct fdtable __rcu *fdt;
    	struct fdtable fdtab;
      /*
       * written part on a separate cache line in SMP
       */
    	spinlock_t file_lock ____cacheline_aligned_in_smp;
    	unsigned int next_fd;
    	unsigned long close_on_exec_init[1];
    	unsigned long open_fds_init[1];
    	unsigned long full_fds_bits_init[1];
    	struct file __rcu * fd_array[NR_OPEN_DEFAULT];
    };
    
    struct file {
    	union {
    		struct llist_node	fu_llist;
    		struct rcu_head 	fu_rcuhead;
    	} f_u;
    	struct path		f_path;
    	struct inode		*f_inode;	/* cached value */
    	const struct file_operations	*f_op;
    	spinlock_t		f_lock;
    	enum rw_hint		f_write_hint;
    	atomic_long_t		f_count;
    	unsigned int 		f_flags;
    	fmode_t			f_mode;
    	struct mutex		f_pos_lock;
    	loff_t			f_pos;
    	struct fown_struct	f_owner;
    	const struct cred	*f_cred;
    	struct file_ra_state	f_ra;
    	u64			f_version;
    #ifdef CONFIG_SECURITY
    	void			*f_security;
    #endif
    	/* needed for tty driver, and maybe others */
    	void			*private_data;
    #ifdef CONFIG_EPOLL
    	struct list_head	f_ep_links;
    	struct list_head	f_tfile_llink;
    #endif /* #ifdef CONFIG_EPOLL */
    	struct address_space	*f_mapping;
    	errseq_t		f_wb_err;
    } 
    

    2.证明

    Linux基础IO【II】真的很详细

    大家有没有好奇过:为什么我们C库函数fopen的返回值类型是FILE*,FILE是什么?当时老师肯定没给我们讲清楚,因为当时我们的知识储备不够。但现在,我们有必要知道FILE其实就是一个结构体类型。

    //stdio.h
    typedef struct _iobuf
    {
        char*  _ptr;        //文件输入的下一个位置
        int    _cnt;        //当前缓冲区的相对位置
        char*  _base;       //文件初始位置
        int    _flag;       //文件标志
        int    _file;       //文件有效性
        int    _charbuf;    //缓冲区是否可读取
        int    _bufsiz;     //缓冲区字节数
        char*  _tmpfname;   //临时文件名
    } FILE;
    

    这3个标准输入输出流既然是文件,操作系统必定为其在系统中创建一个对应的struct file结构体。 

    为了证明我们的判断,我们可以:调用struct file内部的一个变量。

    操作系统底层底层是用文件描述符来标识一个文件的。纵所周知,C文件操作函数是对系统接口的封装。所以FILE结构体中一定隐藏着一个字段来储存文件描述符。而且stdin,stdout,stderr都是FILE*类型的变量,

    Linux基础IO【II】真的很详细

    所以:

    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    // 我没有指明具体的路径,采用了字符串拼接的方式。
    #define FILE_NAME(number) "log.txt" #number
    int main()
    {
        printf("stdin:%d\n", stdin->_fileno);//调用struct file内部的一个变量
        printf("stdout:%d\n", stdout->_fileno);
        printf("stderr:%d\n", stderr->_fileno);
        umask(0);
        int fd1 = open(FILE_NAME(1), O_WRONLY | O_CREAT, 0666);
        int fd2 = open(FILE_NAME(2), O_WRONLY | O_CREAT, 0666);
        int fd3 = open(FILE_NAME(3), O_WRONLY | O_CREAT, 0666);
        int fd4 = open(FILE_NAME(4), O_WRONLY | O_CREAT, 0666);
        int fd5 = open(FILE_NAME(5), O_WRONLY | O_CREAT, 0666);
        printf("fd1:%d\n", fd1);
        printf("fd2:%d\n", fd2);
        printf("fd3:%d\n", fd3);
        printf("fd4:%d\n", fd4);
        printf("fd5:%d\n", fd5);
        close(fd1);
        close(fd2);
        close(fd3);
        close(fd4);
        close(fd5);
    }

    Linux基础IO【II】真的很详细

    来啦,终于来啦!!终于证明我们的推断。

    2.理解文件描述符

    进程中打开的文件都有一个唯一的文件描述符,用来标识这个文件,进而对文件进行相关操作。其实,我们之前就接触到了文件描述符,我们简单回忆一下:

    • 调用open函数的返回值,就是一个文件描述符。只不过,我们打开的文件的文件描述符默认是从3开始的,0.1.2是系统自动为进程打开的。
    • 调用close传入的参数。
    • 调用write,read函数的第一个参数。

      可见,文件描述符对我们进行文件操作有多么重要。文件描述符就像一个人身份证,在一个进程中具有唯一性。


      文件描述符fd的取值范围:文件描述符的取值范围通常是从0到系统定义的最大文件描述符值。

      当Linux新建一个进程时,会自动创建3个文件描述符0、1和2,分别对应标准输入、标准输出和错误输出。C库中与文件描述符对应的是文件指针,与文件描述符0、1和2类似,我们可以直接使用文件指针stdin、stdout和stderr。意味着stdin、stdout和stderr是“自动打开”的文件指针。

      在Linux系统中,文件描述符0、1和2分别有以下含义:

      • 文件描述符0(STDIN_FILENO):它是标准输入文件描述符,通常与进程的标准输入流(stdin)相关联。它用于接收来自用户或其他进程的输入数据。默认情况下,它通常与终端或控制台的键盘输入相关联。
      • 文件描述符1(STDOUT_FILENO):它是标准输出文件描述符,通常与进程的标准输出流(stdout)相关联。它用于向终端或控制台输出数据,例如程序的正常输出、结果和信息。
      • 文件描述符2(STDERR_FILENO):它是标准错误文件描述符,通常与进程的标准错误流(stderr)相关联。它用于输出错误消息、警告和异常信息到终端或控制台。与标准输出不同,标准错误通常用于输出与程序执行相关的错误和调试信息。

        这些文件描述符是在进程创建时自动打开的,并且可以在程序运行期间使用。它们是程序与用户、终端和操作系统之间进行输入和输出交互的重要通道。通过合理地使用这些文件描述符,程序可以接收输入、输出结果,并提供错误和调试信息,以实现与用户的交互和数据处理。

        1.文件描述符的分配规则

        文件描述符的分配规则为:从0开始查找,使用最小的且没有占用的文件描述符。

        所以:我们是否可是手动的关闭,系统为我们自动带的3个文件呢?so try!

         先试着关闭一下0号文件描述符对应的标准输入流

        #include 
        #include 
        #include 
        #include 
        #include 
        #include 
        #include 
        // 我没有指明具体的路径,采用了字符串拼接的方式。
        #define FILE_NAME(number) "log.txt" #number
        int main()
        {
           close(0);
            umask(0);
            int fd1 = open(FILE_NAME(1), O_WRONLY | O_CREAT, 0666);
            int fd2 = open(FILE_NAME(2), O_WRONLY | O_CREAT, 0666);
            int fd3 = open(FILE_NAME(3), O_WRONLY | O_CREAT, 0666);
            int fd4 = open(FILE_NAME(4), O_WRONLY | O_CREAT, 0666);
            int fd5 = open(FILE_NAME(5), O_WRONLY | O_CREAT, 0666);
            printf("fd1:%d\n", fd1);
            printf("fd2:%d\n", fd2);
            printf("fd3:%d\n", fd3);
            printf("fd4:%d\n", fd4);
            printf("fd5:%d\n", fd5);
            close(fd1);
            close(fd2);
            close(fd3);
            close(fd4);
            close(fd5);
        }

        结果,我们自己打开的文件就把0号文件描述符给占用了。接着,我们试试关闭之后写入受什么影响。

        没关闭之前:

        #include
        #include
        #include
        int main()
        {
            //close(0);
            char buffer[1024];
            memset(buffer,0,sizeof(buffer));
            scanf("%s",buffer);
            printf("%s\n",buffer);
        }

        Linux基础IO【II】真的很详细

        关闭后:

        #include
        #include
        #include
        int main()
        {
            close(0);
            char buffer[1024];
            memset(buffer,0,sizeof(buffer));
            scanf("%s",buffer);
            printf("%s\n",buffer);
        }

        Linux基础IO【II】真的很详细

        我们发现:scanf函数直接无法使用,输入功能无法使用。原因是什么?

        这是因为我们将0号文件描述符关闭后,0号文件描述符就不指向标准输入流了。但是当使用输入函数输入时,他们仍然会向0号中输入,但0号已经不指向输入流了,所以就无法完成输入。

        大家也可以自行将1号文件描述符和2号文件描述符试着关闭一下,观察一下关闭前后有什么不同之处。

        3.如何理解文件操作的本质?

        • 我们说:文件操作的本质是进程和被打开文件之间的关系。对这句话我们应该如何理解呢?
        • 文件描述符为什么就是数组的下标呢?
        • 如何理解键盘,显示器也是文件?

        Linux基础IO【II】真的很详细

        如上图:

        进程想要打开位于磁盘上的my.txt文件,文件加载到内存之后,操作系统为了管理该文件,为其创建了一个struct file结构体来保存该文件的属性信息。此时,内存中已经存在系统默认打开的标准输入流,标准输出流,标准错误流对应的struct file结构体。但是,系统中有很多进程,,一定会有大量被打开的文件,进程如何分清个哪文件属于该进程呢?我们知道task_struct结构体保存着关于该进程的所有属性。其中有一个struct file_struct*类型的指针files,指向一个struct file_struct 类型的结构体,该结构体中存在着一个struct file*类型的数组,数组的元素为struct file*类型。正好存放指向我们为每一个文件创建的struct file结构体的指针。所以,根据这个数组,我们就会很顺利的找到每一个文件的struct file结构体。进而找到每一个属于该进程的文件,然后对文件进行相关操作。由于数组的下标具有很好的唯一性,所以系统就向上层返回存放文件的struct file结构体指针的元素下标,供上层函数利用这个下标对文件进行操作。

         通过这段文字,相信大家已经对我们刚刚提出的几个问题已经有了答案!

        4.输入重定向和输出重定向        

        1.原理

        重定向的原理就是:上层调用的fd不变,在内核中更改fd对应的struct file*地址。

        如下图:

        Linux基础IO【II】真的很详细

        我们调用了close(1)关闭了输出文件流。然后打开了myfile文件,根据文件描述符的分配规则(从0开始查找最小且没有被占用的充当自己的文件描述符)。myfile的文件描述符。但是上层并不知道输入文件流对应的文件描述符已经发生改变,所以当调用printf函数时,仍然向1号文件描述符中输出。但是1号描述符对应的地址已发生改变,变为myfile,所以本想使用printf往显示器中输入的东西就会输入到myfile文件中。这就是输出重定向。

        输入重定向和输出重定向原理是一样的,只不过输入重定向关闭的是输入流,输出重定向关闭的是输出文件流。

         Linux基础IO【II】真的很详细

         我们调用了close(0)关闭了输入文件流。然后打开了myfile文件,根据文件描述符的分配规则(从0开始查找最小且没有被占用的充当自己的文件描述符)。myfile的文件描述符。但是上层并不知道输入文件流对应的文件描述符已经发生改变,所以当调用printf函数时,仍然向0号文件描述符中输出。但是0号描述符对应的地址已发生改变,变为myfile,所以就会输入到myfile文件中。这就是输入重定向。

        2.代码实现重定向

        说了这么多,是不是该实现一下了:

        先来实现一下输出重定向:

        #include
        #include
        #include
        #include
        #include
        #include
        int main()
        {
            close(1);
            umask(0); 
            int n=open("wang.txt",O_RDWR|O_CREAT,0666);
            printf("wanghan");
            close(n);
        }

        Linux基础IO【II】真的很详细

        什么鬼?失蒜了?,其实,这时候我们输出的内容都在缓冲区内,没被刷新出来,我们需要手动刷新一下缓冲区。把代码修改一下:

        #include
        #include
        #include
        #include
        #include
        #include
        int main()
        {
            close(1);
            umask(0); 
            int n=open("wang.txt",O_RDWR|O_CREAT,0666);
            printf("wanghan");
            fflush(stdout);//刷新缓冲区
            close(n);
        }

        Linux基础IO【II】真的很详细

        看,我们想要打印在显示器中的东西,就被我们成功输出到了指定的文件中。

        接着,我们尝试一下写输入重定向: 

        #include
        #include
        #include
        #include
        #include
        #include
        int main()
        {
            close(0);
            umask(0); 
            int n=open("wang.txt",O_RDWR|O_CREAT,0666);
            scanf("%d",stdin);
            char arr[1024]="conglution you,you are successful";
            
            write(0,arr,strlen(arr));
            close(n);
        }

        Linux基础IO【II】真的很详细

         但是,这搞个重定向这么复杂,是不是有点太low了?所以专门用于重定向的函数就出现了。

        3.dup函数
        Linux基础IO【II】真的很详细

        其中,我们最常用的就是dup2。

        Linux基础IO【II】真的很详细 Linux基础IO【II】真的很详细

         返回值:

        • 如果成功,返回newfd。
        • 如果失败,返回-1。

          原理:将oldfd中的struct file结构体地址拷贝到newfd中。

          实例:

          输出重定向

          #include
          #include
          #include
          #include
          #include
          #include
          int main()
          {
             
              umask(0); 
              int n=open("wang.txt",O_RDWR|O_CREAT|O_TRUNC);
              dup2(n,1);//尝试写一下输出重定向。
              printf("successful");
              fflush(stdout);
              close(n);
          }

          Linux基础IO【II】真的很详细

           达到了我们的预期效果。

          输入重定向

          #include
          #include
          #include
          #include
          #include
          #include
          int main()
          {
              int n=open("wang.txt",O_RDWR);
              dup2(n,0);//尝试写一下输入重定向。
              char buffer[64];
              while(1)
              {
                  printf(">");
                  if(fgets(buffer,sizeof buffer,stdin)==nullptr) break;    
                  printf("%s",buffer);
              }
              close(n);
              return 0;
          }
          

          Linux基础IO【II】真的很详细

          4.命令行中实现重定向

          我们在命令行中,通过输入相关指令也可以实现重定向的功能:

          '>':输入重定向
          '>>':追加重定向
          '<<':输出重定向

          这些命令底层都是用dup实现的,大家感兴趣的可以尝试写一下代码。 

           二.关于缓冲区

          1.现象

          #include
          #include
          #include
          #include
          int main()
          {
              //C接口
              printf("hello printf\n");
              fprintf(stdout,(char*)"hello fprintf\n");
              fputs("hello fputs\n",stdout);
              //系统接口
              char *msg="hello write\n";
              write(1,msg,strlen(msg));
              fork();
              return 0;
          }

          Linux基础IO【II】真的很详细

          我们观察到:把运行结果重定向到文件中时,C语言函数都被打印了2次,唯独操作系统接口被打印了一次。这是为什么?但是我们知道这种现象一定和缓冲区有关。

          2.重新理解缓冲区

          缓冲区本质就是一段内存!!谁申请的?属于谁?为什么要申请 ?

          我们先来一个故事乐呵一下:

          张三在广东,他的好朋友李四在北京。他们俩关系嘎嘎好,所以,张三总喜欢把自己用过的东西送给李四,比如包浆的键盘等等。头一开始,张三 都是骑车或者坐火车亲自把东西给李四送过。一来一会都得花小半个月的时间。有一次,舍友对他说:"咱们楼下不是有顺丰嘛,你干嘛不快递给他寄过去呢?"。一语点醒梦中人啊!!从那以后,张三就给李四发快递给他送东西。这样,张三就可以有时间学习和干其他事情了。所以人们都喜欢用快递发送东西,节省时间。

          广东就相当于内存,北京就相当于磁盘,张三就相当于一个进程,楼下的顺丰就相当于内存中的缓冲区。内存往磁盘中写东西是非常慢的,就像张三亲自给李四送东西一样。那么缓冲区的意义是什么呢?节省进程进行数据IO的时间

           但是,我们并没有做让数据写入到缓冲区的操作呀?

          我们使用的fwrite函数,与其把它当做一个文件写入函数,不如把它当做一个拷贝函数,将数据从缓冲区拷贝到“内存”或“外设”。

          3.缓冲区刷新策略问题

           同样的数据量 ,一次性全部写入到磁盘中,和多次少量写入到外设中,哪种效率最高?

          毫无疑问,一次性写入磁盘中效率最高,因为数据的读取和写入占用的时间很短,大部分时间都用来等待外设就绪。

          缓冲区一定会结合自己的设备,定制自己的刷新策略:

          • 行刷新:即行缓存,对应的设备就是显示器,我们试用的“\n”采用的刷新方式都是行刷新。虽然使用将数据一次刷新到显示器上效率最高,但是人类更习惯于按行读取内容,所以为了给用户更好的体验,使用行刷新更好。
          • 立即刷新:相当于没有缓冲区。
          • 缓冲区满:全刷新,常用于向磁盘文件中写入。效率最高。

          有两种情况不符合刷新策略的规定

          • 用户强制刷新,比如fflush(stdout)。
          • 进程退出,一般都要刷新缓冲区。 

          4.缓冲区的位置

          缓冲区在哪?指的是什么缓冲区? 

          首先,我们可以肯定:这个缓冲区一定不在内核中,因为如果缓冲区在内核中,write也会打印两次。 

          我们之前谈论的所有的缓冲区,都指的是用户级语言层面给我们提供的缓冲区。

          我们之前提到过:stdout,stdin,stderr的类型都是FILE*类型,FILE是一个结构体,该结构体中除了包含一个fd,还有一个缓冲区。所以我们强制刷新缓冲区调用fflush时,都要传入一个FILE*类型的指针;我们在关闭一个进程调用fclose时,也要传入一个FILE*类型的指针。因为FILE结构体内部包含一个缓冲区。

          如图:

          Linux基础IO【II】真的很详细

          5.如何解释刚刚的现象呢?

           明白了上面的内容,我们就能够明白刚刚的现象了。

          没有进行重定向。stdout默认使用的是行刷新,在进程调用fork()之前,三条C语言函数打印的信息已经显示到了显示器上(外设)。FILE内部的缓冲区不存在对应的数据了。

          如果进行了重定向,写入不再是显示器,而是磁盘文件,采用的刷新策略是缓冲区满再刷新。之前的3条打印的信息,虽然带来‘\n’,但是不足以让stdout缓冲区写满。数据并没有被刷新。执行fork时,stdout属于父进程。创建子进程时,紧接着就是进程退出,谁先退出,就要先进行缓冲区刷新(也就是修改数据,发生写时拷贝)。父子进程在退出时都会刷新一次缓冲区,所以就会打印两次。

          write为什么没有被打印两次呢?

          上面的过程和write无关,因为write没有FILE,而用的是fd,也就无法使用C语言层面的缓冲区。

          总结

          • C语言的一些IO接口需要熟练掌握,例如fwrite,fread等等。明白C文件函数和系统接口之间的关系。C函数是底层库函数的封装。
          •  当前当前路径是根据进程的cwd来决定的,C语言默认打开三个流:stdin、stdout、stderr。他们三个 分别占用0、1、2三个文件描述符。
          •  系统层面的IO交互接口有 write、open、close、read等需要理解。
          •  文件=内容+属性;一个文件是否为空都会存在属性,而操作系统为了维护文件的属性,先描述再组织,将文件的属性组织为一个结构体file,而 每个file以双链表的形式相连。
          •  因为Linux下一切皆文件,所以文件也需要被组织起来,于是file结构体的指针file*被组织起来封装在一个叫做files_struct 指针数组内,而数组下标就是 文件描述符。
          •  重定向是 根据更改文件描述符的指向的struct file结构体 做到的,可以使用dup2接口做调整。
          •  缓冲区本质上是一块内存区域,而缓冲区分为系统层缓冲区和语言层缓冲区,在C语言中缓冲区被封装在FILE结构体内,每一个文件都有自己的缓冲区。
          •  缓冲区满了会刷新到内核中,而 刷新的本质就是写入。

            写到最后,本文到这里就结束了,谢谢大家观看,如果文中有什么错误,欢迎大家批评指正!!

            Linux基础IO【II】真的很详细

转载请注明来自码农世界,本文标题:《Linux基础IO【II】真的很详细》

百度分享代码,如果开启HTTPS请参考李洋个人博客
每一天,每一秒,你所做的决定都会改变你的人生!

发表评论

快捷回复:

评论列表 (暂无评论,91人围观)参与讨论

还没有评论,来说两句吧...

Top