如何保证数据库和缓存的一致性

如何保证数据库和缓存的一致性

码农世界 2024-06-20 后端 86 次浏览 0个评论

背景:为了提高查询效率,一般会用redis作为缓存。客户端查询数据时,如果能直接命中缓存,就不用再去查数据库,从而减轻数据库的压力,而且redis是基于内存的数据库,读取速度比数据库要快很多。

更新数据库,更新缓存

由于引入了缓存,那么在数据更新时,不仅要更新数据库,而且要更新缓存,这两个更新操作存在前后的问题:

  • 先更新数据库,再更新缓存;
  • 先更新缓存,再更新数据库;

    先更新数据库,再更新缓存

    会存在并发问题。

    举个例子,比如「请求 A 」和「请求 B 」两个请求,同时更新「同一条」数据,则可能出现这样的顺序:

    如何保证数据库和缓存的一致性

    请求A先将数据库更新为1,然后因为网络原因,缓存更新延迟了,在这之间请求B将数据库更新为2,并且把缓存更新为2了,之后缓存更新为1才更新成功,那么此时数据库中数据是2,缓存中数据为1,出现了数据不一致现象。

    先更新缓存,再更新数据库

    那换成「先更新缓存,再更新数据库」这个方案,还会有问题吗?

    依然还是存在并发的问题。

    假设「请求 A 」和「请求 B 」两个请求,同时更新「同一条」数据,则可能出现这样的顺序:

    如何保证数据库和缓存的一致性

    A 请求先将缓存的数据更新为 1,然后在更新数据库前,B 请求来了, 将缓存的数据更新为 2,紧接着把数据库更新为 2,然后 A 请求将数据库的数据更新为 1。

    此时,数据库中的数据是 1,而缓存中的数据却是 2,出现了缓存和数据库中的数据不一致的现象。

    所以,无论是「先更新数据库,再更新缓存」,还是「先更新缓存,再更新数据库」,这两个方案都存在并发问题,当两个请求并发更新同一条数据的时候,可能会出现缓存和数据库中的数据不一致的现象。

    更新数据库,删除缓存

    在更新数据时,不更新缓存,而是删除缓存中的数据。然后,到读取数据时,发现缓存中没了数据之后,再从数据库中读取数据,更新到缓存中。这个策略叫 Cache Aside 策略,中文是叫旁路缓存策略。

    该策略又可以细分为「读策略」和「写策略」。

    如何保证数据库和缓存的一致性

    写策略的步骤:

    • 更新数据库中的数据;
    • 删除缓存中的数据。

      读策略的步骤:

      • 如果读取的数据命中了缓存,则直接返回数据;
      • 如果读取的数据没有命中缓存,则从数据库中读取数据,然后将数据写入到缓存,并且返回给用户。

        先删除缓存,再更新数据库

        假设某个用户的年龄是 20,请求 A 要更新用户年龄为 21,所以它会删除缓存中的内容。这时,另一个请求 B 要读取这个用户的年龄,它查询缓存发现未命中后,会从数据库中读取到年龄为 20,并且写入到缓存中,然后请求 A 继续更改数据库,将用户的年龄更新为 21。

        如何保证数据库和缓存的一致性

        最终,该用户年龄在缓存中是 20(旧值),在数据库中是 21(新值),缓存和数据库的数据不一致。

        可以看到,先删除缓存,再更新数据库,在「读 + 写」并发的时候,还是会出现缓存和数据库的数据不一致的问题。

        延迟双删

        针对这个问题,可以使用延迟双删

        延迟双删实现的伪代码如下:

        #删除缓存
        redis.delKey(X)
        #更新数据库
        db.update(X)
        #睡眠
        Thread.sleep(N)
        #再删除缓存
        redis.delKey(X)
        

        加了个睡眠时间,主要是为了确保请求 A 在睡眠的时候,请求 B 能够在这这一段时间完成「从数据库读取数据,再把缺失的缓存写入缓存」的操作,然后请求 A 睡眠完,再删除缓存。

        所以,请求 A 的睡眠时间就需要大于请求 B 「从数据库读取数据 + 写入缓存」的时间。

        先更新数据库,再删除缓存

        假如某个用户数据在缓存中不存在,请求 A 读取数据时从数据库中查询到年龄为 20,在未写入缓存中时另一个请求 B 更新数据。它更新数据库中的年龄为 21,并且清空缓存。这时请求 A 把从数据库中读到的年龄为 20 的数据写入到缓存中。

        如何保证数据库和缓存的一致性

        最终,该用户年龄在缓存中是 20(旧值),在数据库中是 21(新值),缓存和数据库数据不一致。

        从上面的理论上分析,先更新数据库,再删除缓存也是会出现数据不一致性的问题,但是在实际中,这个问题出现的概率并不高。

        因为缓存的写入通常要远远快于数据库的写入,所以在实际中很难出现请求 B 已经更新了数据库并且删除了缓存,请求 A 才更新完缓存的情况。

        而一旦请求 A 早于请求 B 删除缓存之前更新了缓存,那么接下来的请求就会因为缓存不命中而从数据库中重新读取数据,所以不会出现这种不一致的情况。

        所以,「先更新数据库 + 再删除缓存」的方案,是可以保证数据一致性的。

        为了确保万无一失,还可以给缓存数据加上了「过期时间」,就算在这期间存在缓存数据不一致,有过期时间来兜底,这样也能达到最终一致。

        问题:

        「先更新数据库, 再删除缓存」其实是两个操作,前面的所有分析都是建立在这两个操作都能同时执行成功,但是删除缓存(第二个操作)的时候失败了,导致缓存中的数据是旧值。

        如何保证数据库和缓存的一致性

        怎么解决?

        重试机制

        我们可以引入消息队列,将第二个操作(删除缓存)要操作的数据加入到消息队列,由消费者来操作数据。

        • 如果应用删除缓存失败,可以从消息队列中重新读取数据,然后再次删除缓存,这个就是重试机制。当然,如果重试超过的一定次数,还是没有成功,我们就需要向业务层发送报错信息了。
        • 如果删除缓存成功,就要把数据从消息队列中移除,避免重复操作,否则就继续重试。

          如何保证数据库和缓存的一致性

          可能疑惑的点

          为什么是删除缓存,而不是更新缓存呢?

          删除一个数据,相比更新一个数据更加轻量级,出问题的概率更小。在实际业务中,缓存的数据可能不是直接来自数据库表,也许来自多张底层数据表的聚合。

          比如商品详情信息,在底层可能会关联商品表、价格表、库存表等,如果更新了一个价格字段,那么就要更新整个数据库,还要关联的去查询和汇总各个周边业务系统的数据,这个操作会非常耗时。 从另外一个角度,不是所有的缓存数据都是频繁访问的,更新后的缓存可能会长时间不被访问,所以说,从计算资源和整体性能的考虑,更新的时候删除缓存,等到下次查询命中再填充缓存,是一个更好的方案。

          系统设计中有一个思想叫 Lazy Loading,适用于那些加载代价大的操作,删除缓存而不是更新缓存,就是懒加载思想的一个应用。

转载请注明来自码农世界,本文标题:《如何保证数据库和缓存的一致性》

百度分享代码,如果开启HTTPS请参考李洋个人博客
每一天,每一秒,你所做的决定都会改变你的人生!

发表评论

快捷回复:

评论列表 (暂无评论,86人围观)参与讨论

还没有评论,来说两句吧...

Top